Cell-Level Pathway Scoring Comparison with a Biologically Constrained Variational Autoencoder. Cham: Springer Nature Switzerland; 2023:62 - 77. doi:10.1007/978-3-031-42697-110.1007/978-3-031-42697-1_5.
. Evolución y Adaptación.150 años después del Origen de las Especies. Valencia. España: Obrapropia.; 2009:510.
Methods of Microarray Data Analysis IISupervised Neural Networks for Clustering Conditions in DNA Array Data After Reducing Noise by Clustering Gene Expression Profiles. ( ). Boston: Kluwer Academic Publishers; 2002:91 - 103. doi:10.1007/b11298210.1007/0-306-47598-7_7.
. Assessment of protein structure predictions. In: Computational Structural Biology. Computational Structural Biology. New Jersey, USA: World Scientific Publishing Company; 2008. Available at: http://www.amazon.com/dp/9812778772/.
. Clustering - Class discovery in the post-genomic era. In: Fundamentals of data mining in genomics and proteomics. Fundamentals of data mining in genomics and proteomics. New York, USA: Springer-Verlag, W. Dubitzky, M. Granzow and D.P. Berrar; 2007.
. Comparative genomics-based prediction of protein function. In: Methods in Molecular Biology.Vol 439. Methods in Molecular Biology. M. Starkey and R. Elaswarapu, Humana press; 2008. Available at: http://www.springerprotocols.com/Abstract/doi/10.1007/978-1-59745-188-8_26.
. The core of a minimal gene set: insights from natural reduced genomes. In: Protocells: Bridging nonliving and living matter. Protocells: Bridging nonliving and living matter. USA: The MIT Press; 2008:347-366.
. Data analysis and visualisation in genomics and proteomics. In: Wiley, F. Azuaje and J. Dopazo; 2005.
. Data and Predictive Model Integration: an Overview of Key Concepts, Problems and Solutions. In: Data analysis and visualisation in genomics and proteomics. Data analysis and visualisation in genomics and proteomics. Wiley, F. Azuaje and J. Dopazo; 2005.
. Docencia en Estadística: Experiencias de Innovación. In: III Jornadas de Intercambio de Experiencias de Innovación Educativa en Estadística.Vol 1. III Jornadas de Intercambio de Experiencias de Innovación Educativa en Estadística.; 2013:201-210.
. f single nucleotide polymorphism arrays: Design, tools and applications. In: Microarray Technology Through Applications. Microarray Technology Through Applications. New York, USA: Taylor & Francis, F. Falciani; 2007.
. Functional annotation of microarray experiments. In: Microarray Technology Through Applications. Microarray Technology Through Applications. New York, USA: Taylor & Francis, F. Falciani; 2007.
. Functional profiling methods in cancer. In: Methods in molecular biology (Clifton, N.J.).Vol 576. Methods in molecular biology (Clifton, N.J.).; 2010:363-74.
. Gene expression Correlation and Gene Ontology-Based Similarity: An Assessment of Quantitative Relationship. In: IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.; 2004:25-31.
. Genómica Comparativa y Selección Natural. Aplicaciones en el Genoma Humano. Capítulo 1.6. In: Evolución y Adaptacón. 150 años después del Origen de las Especies. Evolución y Adaptacón. 150 años después del Origen de las Especies. Valencia: Obrapropia.; 2009:51-59.
. Integrative Data Analysis and Visualization: Introduction to Critical Problems, Goals and Challenges. In: Data analysis and visualisation in genomics and proteomics. Data analysis and visualisation in genomics and proteomics. Wiley, F. Azuaje and J. Dopazo; 2005:3-9.
. La clasificación de los organismos. In: Invitación a la Biología. Invitación a la Biología. Buenos Aires: Curtis, Barnes, Schnek & Flores. 2da, Editorial Medica Panamericana; 2006.
. Microarray Data Processing And Analysis. In: Microarray data analysis II. Microarray data analysis II. Kluwer Academic; 2002:43-63.
. Microarray Technology in Agricultural Research. In: Microarray Technology Through Applications. Microarray Technology Through Applications. F. Falciani. Publisher: Taylor and Francis Group; 2007:173-209.
. New Trends in the Analysis of Functional Genomic Data. In: Progress in Industrial Mathematics at ECMI 2006.Vol 12. Progress in Industrial Mathematics at ECMI 2006. Berlin: Springer; 2007:576-580. doi:10.1007/978-3-540-71992-2_94.
. Ontologies and functional genomics. In: Data analysis and visualisation in genomics and proteomics. Data analysis and visualisation in genomics and proteomics. Wiley, F. Azuaje and J. Dopazo; 2005:99-102.
. Protein Interactions for Functional Genomics. In: Biological Data Mining in Protein Interaction Networks. Biological Data Mining in Protein Interaction Networks. Hershey, USA: Idea Group Inc (IGI); 2009:223-238. Available at: http://books.google.es/books?id=pNyCy5GsqtkC.
. Reconstruction of ancestral proteomes. In: Ancestral Sequence Reconstruction. Ancestral Sequence Reconstruction. Oxford: D. Liberles; 2007. Available at: http://www.us.oup.com/us/catalog/general/subject/LifeSciences/EvolutionaryBiology/?view=usa&ci=9780199299188.
. Reliable and specific protein function prediction by combining homology with genomic(s) context. In: Discovery of biomolecular mechanisms with theoretical data analyses. Discovery of biomolecular mechanisms with theoretical data analyses. F. Eisenhaber, Landes Bioscience; 2006. Available at: http://www.landesbioscience.com/iu/output.php?id=479.
. Salinibacter ruber: genomics and biogeography. In: Adaptation to life in high salt concentrations in Archaea, Bacteria and Eukarya.Vol 9. Adaptation to life in high salt concentrations in Archaea, Bacteria and Eukarya. Dordrecht, Netherlands: Nina Gunde-Cimerman, Ana Plemenitas, and Aharon Oren. Kluwer Academic Publishers; 2005:257-266.