Publications

Export 205 results:
Author [ Title(Asc)] Type Year
Filters: First Letter Of Last Name is T  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Shi L, Campbell G, Jones WD, et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature biotechnology. 2010;28:827-38. Available at: http://www.nature.com/nbt/journal/v28/n8/full/nbt.1665.html.
Shi L, Campbell G, Jones WD, et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature biotechnology. 2010;28:827-38. Available at: http://www.nature.com/nbt/journal/v28/n8/full/nbt.1665.html.
Shi L, Campbell G, Jones WD, et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature biotechnology. 2010;28:827-38. Available at: http://www.nature.com/nbt/journal/v28/n8/full/nbt.1665.html.
Shi L, Campbell G, Jones WD, et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature biotechnology. 2010;28:827-38. Available at: http://www.nature.com/nbt/journal/v28/n8/full/nbt.1665.html.
Shi L, Campbell G, Jones WD, et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature biotechnology. 2010;28:827-38. Available at: http://www.nature.com/nbt/journal/v28/n8/full/nbt.1665.html.
Shi L, Campbell G, Jones WD, et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature biotechnology. 2010;28:827-38. Available at: http://www.nature.com/nbt/journal/v28/n8/full/nbt.1665.html.
Shi L, Campbell G, Jones WD, et al. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models. Nature biotechnology. 2010;28:827-38. Available at: http://www.nature.com/nbt/journal/v28/n8/full/nbt.1665.html.
Mateos A, Herrero J, Tamames J, Dopazo J. Methods of Microarray Data Analysis IISupervised Neural Networks for Clustering Conditions in DNA Array Data After Reducing Noise by Clustering Gene Expression Profiles. (Lin SM, Johnson KF, eds.). Boston: Kluwer Academic Publishers; 2002:91 - 103. doi:10.1007/b11298210.1007/0-306-47598-7_7.
Brumos J, Colmenero-Flores JM, Conesa A, et al. Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive Citrus rootstocks. Funct Integr Genomics. 2009. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19190944.
Conesa A, Nueda MJ, Ferrer A, Talon M. maSigPro: a method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics. 2006;22:1096-102. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16481333.
I
Conde L, Montaner D, Burguet-Castell J, et al. ISACGH: a web-based environment for the analysis of Array CGH and gene expression which includes functional profiling. Nucleic Acids Res. 2007;35(Web Server issue):W81-5. doi:10.1093/nar/gkm257.
Conde L, Montaner D, Burguet-Castell J, et al. ISACGH: a web-based environment for the analysis of Array CGH and gene expression which includes functional profiling. Nucleic Acids Res. 2007;35:W81-5. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17468499.
Terol J, Ibañez V, Carbonell J, et al. Involvement of a citrus meiotic recombination TTC-repeat motif in the formation of gross deletions generated by ionizing radiation and MULE activation. BMC Genomics. 2015;16:69. doi:10.1186/s12864-015-1280-3.
Terol J, Ibañez V, Carbonell J, et al. Involvement of a citrus meiotic recombination TTC-repeat motif in the formation of gross deletions generated by ionizing radiation and MULE activation. BMC Genomics. 2015;16:69. doi:10.1186/s12864-015-1280-3.
Terol J, Ibañez V, Carbonell J, et al. Involvement of a citrus meiotic recombination TTC-repeat motif in the formation of gross deletions generated by ionizing radiation and MULE activation. BMC genomics. 2015;16:69. doi:10.1186/s12864-015-1280-3.
Terol J, Ibañez V, Carbonell J, et al. Involvement of a citrus meiotic recombination TTC-repeat motif in the formation of gross deletions generated by ionizing radiation and MULE activation. BMC genomics. 2015;16:69. doi:10.1186/s12864-015-1280-3.
González-Tendero A, Torre I, García-Cañadilla P, et al. Intrauterine growth restriction is associated with cardiac ultrastructural and gene expression changes related to the energetic metabolism in a rabbit model. Am J Physiol Heart Circ Physiol. 2013;305(12):H1752-60. doi:10.1152/ajpheart.00514.2013.
Wilkinson MD, Senger M, Kawas E, et al. Interoperability with Moby 1.0–it’s better than sharing your toothbrush!. Brief Bioinform. 2008;9:220-31. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18238804.
Wilkinson MD, Senger M, Kawas E, et al. Interoperability with Moby 1.0–it’s better than sharing your toothbrush!. Brief Bioinform. 2008;9:220-31. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18238804.
Wilkinson MD, Senger M, Kawas E, et al. Interoperability with Moby 1.0–it’s better than sharing your toothbrush!. Brief Bioinform. 2008;9:220-31. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18238804.