Genomics

A genomic strategy for precision medicine in rare diseases: integrating customized algorithms into clinical practice.

Méndez-Vidal C, Bravo-Gil N, Perez-Florido J, et al. A genomic strategy for precision medicine in rare diseases: integrating customized algorithms into clinical practice. J Transl Med. 2025;23(1):86. doi:10.1186/s12967-025-06069-2.

The integrated genomic surveillance system of Andalusia (SIEGA) provides a One Health regional resource connected with the clinic.

Casimiro-Soriguer CS, Perez-Florido J, Robles EA, et al. The integrated genomic surveillance system of Andalusia (SIEGA) provides a One Health regional resource connected with the clinic. Sci Rep. 2024;14(1):19200. doi:10.1038/s41598-024-70107-0.

A versatile workflow to integrate RNA-seq genomic and transcriptomic data into mechanistic models of signaling pathways.

Garrido-Rodriguez M, López-López D, Ortuno FM, et al. A versatile workflow to integrate RNA-seq genomic and transcriptomic data into mechanistic models of signaling pathways. PLoS Comput Biol. 2021;17(2):e1008748. doi:10.1371/journal.pcbi.1008748.

Community Assessment of the Predictability of Cancer Protein and Phosphoprotein Levels from Genomics and Transcriptomics.

Yang M, Petralia F, Li Z, et al. Community Assessment of the Predictability of Cancer Protein and Phosphoprotein Levels from Genomics and Transcriptomics. Cell Syst. 2020;11(2):186-195.e9. doi:10.1016/j.cels.2020.06.013.

Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen.

Menden MP, Wang D, Mason MJ, et al. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat Commun. 2019;10(1):2674. doi:10.1038/s41467-019-09799-2.

Exploring the druggable space around the Fanconi anemia pathway using machine learning and mechanistic models.

Esteban-Medina M, Peña-Chilet M, Loucera C, Dopazo J. Exploring the druggable space around the Fanconi anemia pathway using machine learning and mechanistic models. BMC Bioinformatics. 2019;20(1):370. doi:10.1186/s12859-019-2969-0.

FatiGO +: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments.

Al-Shahrour F, Minguez P, Tárraga J, et al. FatiGO +: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Res. 2007;35(Web Server issue):W91-6. doi:10.1093/nar/gkm260.