Prophet, a web-based tool for class prediction using microarray data. Bioinformatics. 2007;23:390-1. Available at: http://bioinformatics.oxfordjournals.org/cgi/content/full/23/3/390?view=long&pmid=17138587.
. Protein Interactions for Functional Genomics. In: Biological Data Mining in Protein Interaction Networks. Biological Data Mining in Protein Interaction Networks. Hershey, USA: Idea Group Inc (IGI); 2009:223-238. Available at: http://books.google.es/books?id=pNyCy5GsqtkC.
. PupaSNP Finder: a web tool for finding SNPs with putative effect at transcriptional level. Nucleic Acids Res. 2004;32:W242-8. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15215388.
PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes. Nucleic Acids Res. 2006;34:W621-5. Available at: http://nar.oxfordjournals.org/cgi/content/full/34/suppl_2/W621.
. Salinibacter ruber: genomics and biogeography. In: Adaptation to life in high salt concentrations in Archaea, Bacteria and Eukarya.Vol 9. Adaptation to life in high salt concentrations in Archaea, Bacteria and Eukarya. Dordrecht, Netherlands: Nina Gunde-Cimerman, Ana Plemenitas, and Aharon Oren. Kluwer Academic Publishers; 2005:257-266.
Selective pressures at a codon-level predict deleterious mutations in human disease genes. J Mol Biol. 2006;358:1390-404. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16584746.
SNP and haplotype mapping for genetic analysis in the rat. Nat Genet. 2008;40:560-6. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18443594.
Supervised Neural Networks For Clustering Conditions In DNA Array Data After Reducing Noise By Clustering Gene Expression Profiles. In: Microarray data analysis II. Microarray data analysis II. Kluwer Academic; 2002:91-103.
. . Unsupervised reduction of the dimensionality followed by supervised learning with a perceptron improves the classification of conditions in DNA microarray gene expression data. In: Neural Networks for Signal Processing XII. 2002 IEEE Signal Processing Society WorkshopProceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing. Neural Networks for Signal Processing XII. 2002 IEEE Signal Processing Society WorkshopProceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing. Martigny, Switzerland: IEEE; 2002. doi:10.1109/NNSP.2002.1030019.
. Use of estimated evolutionary strength at the codon level improves the prediction of disease-related protein mutations in humans. Hum Mutat. 2008;29:198-204. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17935148.
. Use of GO Terms to Understand the Biological Significance of Microarray Differential Gene Expression Data. In: Microarray data analysis III. Microarray data analysis III. Kluwer Academic, K. F. Johnson and S. M. Lin; 2003:233-247.
. Using Gene Ontology on genome-scale studies to find significant associations of biologically relevant terms to group of genes. In: Neural Networks for Signal Processing XIII. Neural Networks for Signal Processing XIII. New York, USA: IEEE Press; 2003:43-52.
. Using perceptrons for supervised classification of DNA microarray samples: obtaining the optimal level of information and finding differentially expressed genes. In: ICANN 2002, LNCS 2415. ICANN 2002, LNCS 2415. J.R. Dorronsoro; 2002:577-582.
.