Publications

Export 346 results:
Author Title Type [ Year(Asc)]
Filters: First Letter Of Last Name is P  [Clear All Filters]
2025
Méndez-Vidal C, Bravo-Gil N, Perez-Florido J, et al. A genomic strategy for precision medicine in rare diseases: integrating customized algorithms into clinical practice. J Transl Med. 2025;23(1):86. doi:10.1186/s12967-025-06069-2.
Martínez-Nava GAngélica, Altamirano-Molina E, Vázquez-Mellado J, et al. Metatranscriptomic analysis reveals gut microbiome bacterial genes in pyruvate and amino acid metabolism associated with hyperuricemia and gout in humans. Sci Rep. 2025;15(1):9981. doi:10.1038/s41598-025-93899-1.
Martínez-Nava GAngélica, Altamirano-Molina E, Vázquez-Mellado J, et al. Metatranscriptomic analysis reveals gut microbiome bacterial genes in pyruvate and amino acid metabolism associated with hyperuricemia and gout in humans. Sci Rep. 2025;15(1):9981. doi:10.1038/s41598-025-93899-1.
Greene D, De Wispelaere K, Lees J, et al. Mutations in the small nuclear RNA gene RNU2-2 cause a severe neurodevelopmental disorder with prominent epilepsy. Nature Genetics. 2025. doi:10.1038/s41588-025-02159-5.
Greene D, De Wispelaere K, Lees J, et al. Mutations in the small nuclear RNA gene RNU2-2 cause a severe neurodevelopmental disorder with prominent epilepsy. Nature Genetics. 2025. doi:10.1038/s41588-025-02159-5.
Greene D, De Wispelaere K, Lees J, et al. Mutations in the small nuclear RNA gene RNU2-2 cause a severe neurodevelopmental disorder with prominent epilepsy. Nature Genetics. 2025. doi:10.1038/s41588-025-02159-5.
Greene D, De Wispelaere K, Lees J, et al. Mutations in the small nuclear RNA gene RNU2-2 cause a severe neurodevelopmental disorder with prominent epilepsy. Nature Genetics. 2025. doi:10.1038/s41588-025-02159-5.
Greene D, De Wispelaere K, Lees J, et al. Mutations in the small nuclear RNA gene RNU2-2 cause a severe neurodevelopmental disorder with prominent epilepsy. Nature Genetics. 2025. doi:10.1038/s41588-025-02159-5.
2024
Maillo A, Huergo E, Apellániz-Ruiz M, et al. Characterization of the Common Genetic Variation in the Spanish Population of Navarre. Genes (Basel). 2024;15(5). doi:10.3390/genes15050585.
Maillo A, Huergo E, Apellániz-Ruiz M, et al. Characterization of the Common Genetic Variation in the Spanish Population of Navarre. Genes (Basel). 2024;15(5). doi:10.3390/genes15050585.
Maillo A, Huergo E, Apellániz-Ruiz M, et al. Characterization of the Common Genetic Variation in the Spanish Population of Navarre. Genes (Basel). 2024;15(5). doi:10.3390/genes15050585.
Esteban-Medina M, Roque VManuel de, Herráiz-Gil S, Peña-Chilet M, Dopazo J, Loucera C. drexml: A command line tool and Python package for drug repurposing. Comput Struct Biotechnol J. 2024;23:1129-1143. doi:10.1016/j.csbj.2024.02.027.
Niarakis A, Ostaszewski M, Mazein A, et al. Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches. Front Immunol. 2024;14:1282859. doi:10.3389/fimmu.2023.1282859.
Niarakis A, Ostaszewski M, Mazein A, et al. Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches. Front Immunol. 2024;14:1282859. doi:10.3389/fimmu.2023.1282859.
Niarakis A, Ostaszewski M, Mazein A, et al. Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches. Front Immunol. 2024;14:1282859. doi:10.3389/fimmu.2023.1282859.
Niarakis A, Ostaszewski M, Mazein A, et al. Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches. Front Immunol. 2024;14:1282859. doi:10.3389/fimmu.2023.1282859.
Niarakis A, Ostaszewski M, Mazein A, et al. Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches. Front Immunol. 2024;14:1282859. doi:10.3389/fimmu.2023.1282859.
Niarakis A, Ostaszewski M, Mazein A, et al. Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches. Front Immunol. 2024;14:1282859. doi:10.3389/fimmu.2023.1282859.
Niarakis A, Ostaszewski M, Mazein A, et al. Drug-target identification in COVID-19 disease mechanisms using computational systems biology approaches. Front Immunol. 2024;14:1282859. doi:10.3389/fimmu.2023.1282859.
Moura DS, Mondaza-Hernandez JL, Sanchez-Bustos P, et al. HMGA1 regulates trabectedin sensitivity in advanced soft-tissue sarcoma (STS): A Spanish Group for Research on Sarcomas (GEIS) study. Cell Mol Life Sci. 2024;81(1):219. doi:10.1007/s00018-024-05250-y.
Mavillard F, Perez-Florido J, Ortuno FM, et al. The Iberian Roma Population Variant Server (IRPVS). J Genet Genomics. 2024. doi:10.1016/j.jgg.2024.03.006.
Mavillard F, Perez-Florido J, Ortuno FM, et al. The Iberian Roma Population Variant Server (IRPVS). J Genet Genomics. 2024. doi:10.1016/j.jgg.2024.03.006.
Casimiro-Soriguer CS, Perez-Florido J, Robles EA, et al. The integrated genomic surveillance system of Andalusia (SIEGA) provides a One Health regional resource connected with the clinic. Sci Rep. 2024;14(1):19200. doi:10.1038/s41598-024-70107-0.
Casimiro-Soriguer CS, Perez-Florido J, Robles EA, et al. The integrated genomic surveillance system of Andalusia (SIEGA) provides a One Health regional resource connected with the clinic. Sci Rep. 2024;14(1):19200. doi:10.1038/s41598-024-70107-0.
Esteban-Medina M, Loucera C, Rian K, et al. The mechanistic functional landscape of retinitis pigmentosa: a machine learning-driven approach to therapeutic target discovery. J Transl Med. 2024;22(1):139. doi:10.1186/s12967-024-04911-7.