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Glioblastoma Multiforme (GBM) is the most common, aggressive and malignant primary tumor 

of the brain and associated with one of the worst 5-year survival rates among all human cancers 

[1]. This tumor diffusely infiltrates the brain early in its course, making complete resection 

impossible.  Advances in treatment for newly diagnosed GBM have led to the current 5-year 

survival rates of 9.8%. Despite therapy, once GBM progresses, the outcome is uniformly fatal, 

with median overall survival historically less than 30 weeks[2]. 

Cancer is a genomic alterations disease: changes in DNA sequence, epigenetic aberrations in 

DNA methylation and genomic variations in copy number together scaffold the development and 

progression of human malignancies, GBM is no different. However, the clinical value of most 

Glioblastoma-associated molecular aberrations in term of their significant in diagnostic, 

prognostic, or predictive molecular markers has remained unclear [3]. A better understanding of 

the molecular characteristics and biology of GBM may help improve treatment and identification 

of cellular factors that drive prognosis may provide a key for novel treatment.          

One of the most comprehensive efforts in molecular characterization of cancer in general and 

Glioblastoma Multiforme in particular is The Cancer Genome Atlas (TCGA) [4]. The types of 

data provided through TCGA, for over 370 patients are: expression abundance through 

microarrays, DNA methylation, copy number variation, and microRNA expression data.                                                                                          

DNA methylation plays an important role in the development of cancer and other diseases due to 

its ability to control gene-expression. Research has shown that the silencing effect of methylation 

achieved through the interaction of methylcytosine binding proteins with other structural 

components of chromatin, which make DNA inaccessible to transcription factors through histone 

deacetylation and chromatin structure changes [5-7]. Hypermethylation of CpG islands located in 

the promoter regions of tumor suppressor genes is now firmly established as an important 

mechanism for gene inactivation in cancers [8]. Somatic copy number variations are extremely 

common in cancer. Deletions and amplifications contribute to alteration in the expression of 

tumor suppressor genes and oncogenes. Detection and mapping of copy number abnormalities 

provides an approach for associating aberrations with disease phenotype and for localizing 

critical genes [9]. MicroRNAs (miRNAs) are small, endogenous non-coding RNA molecules 

that contribute to modulating the expression level of specific proteins based on sequence 



complementarities with their target mRNA molecules. Their role in many human diseases in 

general and cancer in particular is well established, and their ability to act both as therapeutic 

agent and disease prognostic biomarker is what makes them so important to understand [10].    

By studying these changes and their versatility, we can find targets for sophisticated therapeutics 

approaches. 

In this work, we analyzed methylation, copy number, microRNA and gene-expression data in 

more than 370 GBM patients from The Cancer Genome Atlas database, and validation data from 

two additional datasets obtained from the Gene Expression Omnibus (GEO) database [11] 

(accession number: GSE4412 [12] and GSE13041 [13]). 

 Here, we took an approach that utilizes network graph structure and combine it with clinical 

outcome and identified significant curated pathways that can serve as biomarker for survival. To 

make use of network graph structure, we applied methods to merge expression data with network 

knowledge [14]. These methods quantify expression behavior in specific sub-networks (such 

sub-networks can be specific pathways or any other defined subnetwork) and produce two 

metrics: network activity and network consistency. In brief, a pathway's activity is a measure of 

how likely the interactions within a pathway are to be active in the specific sample at hand. A 

sample's pathway consistency is a measure of the compatibility between gene-expression 

abundance in that sample and molecular description as it detailed in the pathway's graph. Further 

details are in the Methods section and in [14]. 

To apply this network-based methodology, we used gene-expression data from TCGA and made 

use of expression levels to deduce pathway metrics. Each sample was thus re-represented using 

its pathway metrics. This representation assigns 579 pathway metric scores (a score for each 

pathway in the database) to each sample. Interaction and pathway information has been obtained 

from The National Cancer Institute's Pathway Interaction Database (PID) [15]. We then iterated 

across the set of samples, using the pathway scores, to assign KM p-values for each of the 

pathways. This procedure allows us to rank each of the pathways according to their ability to 

stratify patients into prognosis groups. We then validated this set of pathways within the two 

additional data sets [12, 13]. We found one pathway, p38 signaling mediated by mapkap 

kinases (NCI/Nature), that significantly and robustly stratify prognosis in all three datasets 

(figure 1). Importantly, none of the gene members in that pathway, by themselves, show 

statistical power in survival analysis. In addition, the groups emerged from the pathway had no 

correlation with any clinical feature which strengthens the hypothesis that this pathway is a core 

mechanism of the disease. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

This pathway, when highly activated, has low survival rates. In addition, previous works found 

that when this pathway is highly activated it induce migration of glioblastoma cells [16].  

 

 

 

 

 

 

 

 

 

 

To further study the molecular characteristics of this pathway, we made use of the intensive 

molecular features available through TCGA. As mentioned earlier, TCGA avails genetic and 

epigenetic information for each tumor sample. We analyzed copy number and methylation 

profiles of the pathway genes. Using Mann-Whitney U test we examine the copy number 

aberrations in both tumor and matched normal samples in order to see if the copy number 

Figure1. Kaplan-Meier curves generated according to values of the P38 pathway across all three datasets. Across 

three panels, Group1 (blue line), which is affiliated with better prognosis, shows lower pathway activity values and 

Group2 (green line) shows higher pathway activity values. The affiliation of pathway metric levels with prognosis 

is highly robust in this case, as it shows low p-values and consistent behavior across datasets. 

 

Figure2. P38 Signaling pathway activity levels distribution across groups. Group1 (blue, higher survival 

rates) has low pathway activity. Group2 (green, lower survival rates) has higher activity levels.  This figure 

demonstrates the large range in the activity levels between groups, and the distinct difference between them. 

 



expression levels in tumor and normal for a specific gene are independent samples from identical 

continuous distributions with equal medians, against the alternative that they do not have equal 

medians. This analysis revealed that 11 out of the 13 genes in this pathways are highly targeted 

to copy number changes (p value<0.05) (Table1). 

 

 

 

 

 

 

 

 

These results reveal that the pathway is highly targeted, and can explain the significant robust 

connection with patient's outcome. When analyzing the methylation status of the genes in the 

p38 pathway we found that 4 of the 13 genes in the pathway are consistently methylated across 

all samples and the remaining 9 genes have no change in their methylation profile.  

Next, we combined the activity levels of the pathway with all 1510 microRNA in order to find 

microRNAs that shows significant correlation with pathway activity and thus can be considered 

as pathway regulators. Interestingly, we were able to find significant negative correlation (p-

value < 0.0001) between the p38 pathway activity levels and hsa-Mir-9*. Deeper examination of 

the gene sequences revealed that 4 out of the 13 genes in the pathway have a possible binding 

site to hsa-Mir-9*, this analysis was performed by doing a blast search of the microRNA mature 

sequence and the 3' UTR region of all 13 genes in the pathway. The fact that this pathway can be 

targeted by single microRNA in different positions strengthens the hypothesis that this pathway 

is indeed can act as a robust single biomarker for GBM.  

Our results demonstrate that pathway interactions are either affiliated with improved prognosis 

by "helping" the pathway counter the tumor or poor prognosis by "breaking down" the pathway's 

normal activity. Through better understanding of the pathway mechanisms and the interactions 

that undergo changes, we may find targets for new treatments. The fact that the pathway we 

identified did not correlate with age or tumor diameter and was found in all three datasets 

strengthens the hypothesis that this pathway is a core mechanism of the disease. The fact that 4 

of the 13 genes in the pathway have a possible target sites for a single microRNA that also has a 

significant correlation with the pathway activity levels can imply on a possible therapeutic agent 

for maintaining "normal" pathway activity. 

Table1. Eleven out of the 13 genes in the p38 pathway had significant change (according to Mann-Whitney test), 

in amplification or deletion in copy number between the tumor and its matched normal sample across all patients. 

 



References 

1. Krex D, Klink B, Hartmann C, von Deimling A, Pietsch T, Simon M, Sabel M, Steinbach JP, Heese 
O, Reifenberger G et al: Long-term survival with glioblastoma multiforme. Brain 2007, 130(Pt 
10):2596-2606. 

2. Prados M, Cloughesy T, Samant M, Fang L, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WK, 
Paleologos N et al: Response as a predictor of survival in patients with recurrent glioblastoma 
treated with bevacizumab. Neuro Oncol, 13(1):143-151. 

3. Weller M, Felsberg J, Hartmann C, Berger H, Steinbach JP, Schramm J, Westphal M, Schackert G, 
Simon M, Tonn JC et al: Molecular predictors of progression-free and overall survival in 
patients with newly diagnosed glioblastoma: a prospective translational study of the German 
Glioma Network. J Clin Oncol 2009, 27(34):5743-5750. 

4. Comprehensive genomic characterization defines human glioblastoma genes and core 
pathways. Nature 2008, 455(7216):1061-1068. 

5. Razin A: CpG methylation, chromatin structure and gene silencing - a three-way connection. 
Embo Journal 1998, 17(17):4905-4908. 

6. Bibikova M, Lin ZW, Zhou LX, Chudin E, Garcia EW, Wu B, Doucet D, Thomas NJ, Wang YH, 
Vollmer E et al: High-throughput DNA methylation profiling using universal bead arrays. 
Genome Research 2006, 16(3):383-393. 

7. Bestor TH: Methylation meets acetylation. 
8. Dehan P, Kustermans G, Guenin S, Horion J, Boniver J, Delvenne P: DNA methylation and cancer 

diagnosis: new methods and applications. Expert Rev Mol Diagn 2009, 9(7):651-657. 
9. Pinkel D, Seagraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C, Zhai Y et al: 

High resolution analysis of DNA copy number variation using comparative genomic 
hybridization to microarrays. Nature Genetics 1998, 20(2):207-211. 

10. Li M, Li J, Ding X, He M, Cheng SY: microRNA and cancer. AAPS J, 12(3):309-317. 
11. Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene expression and 

hybridization array data repository. Nucleic Acids Res 2002, 30(1):207-210. 
12. Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau LM, Mischel PS, Nelson SF: 

Gene expression profiling of gliomas strongly predicts survival. Cancer Res 2004, 64(18):6503-
6510. 

13. Lee Y, Scheck AC, Cloughesy TF, Lai A, Dong J, Farooqi HK, Liau LM, Horvath S, Mischel PS, Nelson 
SF: Gene expression analysis of glioblastomas identifies the major molecular basis for the 
prognostic benefit of younger age. BMC Med Genomics 2008, 1:52. 

14. Efroni S, Schaefer CF, Buetow KH: Identification of key processes underlying cancer phenotypes 
using biologic pathway analysis. PLoS ONE 2007, 2:e425. 

15. Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH: PID: the Pathway 
Interaction Database. Nucleic Acids Res 2009, 37(Database issue):D674-679. 

16. Nomura N, Nomura M, Sugiyama K, Hamada J: Phorbol 12-myristate 13-acetate (PMA)-induced 
migration of glioblastoma cells is mediated via p38MAPK/Hsp27 pathway. Biochem Pharmacol 
2007, 74(5):690-701. 

 

 


