How to Multiple Align Huge Number of Pyrosequencing Reads

0

Fahad Saeed and Ashfaq Khokhar

Department of Electrical and Computer Engineering, University of Illinois at Chicago

Osvaldo Zagordi, and Niko Beerenwinkel

Department of Biosystems Science and Engineering, ETH Zurich

Overview

- Genome Sequencing with Pyrosequencing (454 GS20 Platform)
- Need for Multiple Alignments
- Problem Statement and Assumptions
- Algorithmic approach
- Quality Results
- Ongoing works
- Conclusions and Future work

A look at the 454 sequencing technology

Genome Sequencing with pyrosequencing

- Fast and Cheap Sequencing: an important goal
- Pyrosequencing: attractive alternative to current sequencing techniques

	Sanger	454/Roche
bps per run	~10 ⁵	~10 ⁸
read length	700-1000	~400
cost per run	~1000 \$	~15000 \$
cost per Mbp	10K \$	100 \$
accuracy	high	low (in-dels)

Key Issues with pyrosequencing

- Read Length: on average 250-400bp
- Orientation: Original and complement (Ignored for this work)
- Errors
 - Insertions: ~36%
 - Deletions: ~27%
 - Ambiguous Bases: ~21%
 - Substitutions: ~16%

Need for Alignments

- Required as a preprocessing step for number of procedures.
- For example, from reads to haplotypes:

Pairwise alignment

- If reference genome is available, then pairwise alignments can be done
- But don't work :
 - Primarily because of insertions due to pyrosequencing

read_0159|beg|1|/ength|250/1-250 read_0210|beg|2|length|254/1-254 read_0123|beg|2|length|250/1-250 read_1168|beg|2|length|256/1-256 read_1640|beg|2|length|253/1-253 read_0543|beg|4|length|253/1-253 read_0583|beg|5|length|256/1-256 read_0655|beg|6|/ength|250/1-250 read_0848|beg|9|/ength|253/1-253 read_1866|beg|7|length|249/1-249 read 0307|beg|7|length|249/1-249 read_1253|beg|8|/ength|250/1-250 read_0735|beg|8|/ength|253/1-253 read_0181|beg|9|/ength|254/1-254 read 0282|beg|11|length|248/1-248 read_0746|beg|11|length|250/1-250 read 1895|beg|12|length|256/1-25 read_1608|beg|14|length|252/1-25. read_1124|beg|15|length|253/1-25 read_0223|beg|15|length|254/1-254 read_0383|beg|15|length|250/1-250 read_1997|beg|15|length|257/1-25 read_1176|beg|16|length|256/1-256 read_1170|beg|16|length|257/1-25 read_1543|beg|17|length|256/1-256 read_1534|beg|20|length|252/1-25. read_0292|beg|19|length|255/1-25 read_0689|beg|19|/ength|252/1-25. read_0303|beg|20|length|254/1-254 read_1450|beg|21|length|249/1-24 read_0754|beg|23|length|251/1-25 read_0068|beg|23|length|251/1-25 read_0390|beg|23|length|253/1-25 read_1594|beg|24|length|254/1-254 read_1492|beg|25|length|260/1-260 read_1489|beg|25|length|252/1-25.

<>	80	90	100	110	120	130	140	150	160
	AGATACAGGAGCA	GATGATACA	GTATTAG AGA	AATGAATTT	GCCAGGAAGA	TGGAAACC AA	AATGATAGGO	GGGAATTGGG	AGGTTT
	ATTAGATACAGGA	GC-GATGAT	ACAGTACTTAG	- AGAAATGA	ATTTGCCAGG.	AA <mark>gatgg</mark> aaaci	C - AAAATGAT	AGGGGGGAATT	GGAGGT
	T T AG A T A C A G G A G	CAGATGATA	CAGTATTAG - A	GAAATGAAT	TTGCCAGGAA	GATGGAAACC-	AAAATGATAG	GGGGAATTGG	AGGTTT
	TTAGATACAGGAG	CAGATGATA	CAGTATTAG - A	G - AATGAAT	TTTGCCAGGA.	A <mark>gatgg</mark> aaacc	AAAATGATA	GGGGGGAATTG	GAGGTT
	TAGATACAGGAGC	AGATGATAC	AGTATTAG - AG	ΑΑΑ <mark>ΤΘ</mark> ΑΑΤΤ	TGCCAGGAAG.	A <mark>tgg</mark> aaacc/	AAA <mark>TG</mark> ATAGG	GGGAATTTGG	AGGTTT
	TAGATACAGGAGC	AGATGATAC	AGTATTAG · A ·	AAATGAATT	TGCCAGGAAG.	AT <mark>gg</mark> aaacc-a/	AAATGATAGG	IGGG <mark>AATTGGT</mark>	AGGTTT
	AGATACAGGAGCA	GATGATACA	GTATTAG - AGA	AATGAATTT	GCCACGGAAG.	A <mark>tgg</mark> aaacc <mark>g</mark> a/	AAATGATAGG	GGGAATTTGG	- GGTTT
	TAGATACAGGAGC	AGATGATAC	AGTATTAG - AG	AAATGAATT	TGCCAGGAAG.	ATGGAAACC - AA	AAATGATAGG	GGGAATTGGA	GGTTTT
	AGATACAGGAGCA	GATGATACA	GTATTAG - AGA	AATGAATTT	GCCACGGAAC	GATTGGTAAACI	C-AAAATGAT	AGGGGGGAATT	GGAGGT
	TAGATACAGGAG	CAGATGATA	CAGTATTAG - A	GAAATGAAT	TTTGCC-GGA.	AGATGGAAACC	AAAATGATA	GGGGGGAATTG	GAGGTT
	AGATALAGGAGL	AGATGATAL	AGTATTAG AG	AAATGAATT	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	A-GGAAALL-A	AATGATAGG	GGGAATIGGA	GGITT
	TTAGATACAGGAGLA	CAGATGATACA	CAGTATTAG A	CAAAT CAATT	TTOCCAGOAAOA	ATGGAAACCAAA)	AAAATAGATAG	GGGGGAATTGGAG	AGGTTT
	AGATACAGGAGC.	GATGATACA	GTATTAG. AGA	AAATGAATT	TACCAGGAAC	SATGGAAACC.	AAATGATAG	GGGGGAATTGG	AGGTTT
8	AGAT - CAGGAGCA	GATGATACA	GTATTAG AGA	AATGAATTT	OCCAGGAACG	ATGG - AACC - AA	AATGATAGO	GGGAATTGGA	GGTTTT
0	AGATACAGGAGCA	GATGATACA	GTATTAG - AGA	AATGAATTT	GCCAGGAAGA	TGGAAACC - AAA	AATGATAGGG	GGAATTGGAG	GTTTTA
6	TAGATACAGGAGC	AGACTGATA	CAGTATTAG - A	GAAATGAAT	TTOCCAGGAA	GATGGAAACC -	AAAATGATAG	GOGGAATTOG	AGGTTT
2	AGATACAGGAGCA	CGATGATAC	AGTATTAG - AG	AAATGAATT	TOCCAGGAAG.	ATGGAAACC - AA	AAATGATAGG	GGGAATTGGA	GGTTTT
3	TTAGATACAGGAG	CAGATAGAT	ACAGTATTAG -	Α <mark>ς</mark> ΑΑΑ Τς ΑΑ	TTTGCCAGGA.	A <mark>gatgg</mark> aaacc	AAAATGATA	GGGGGGAATTG	GAGGTT
4	TAGATACAGGAGC	AGATGAT - C	AGTATTAG - AG	AAATGAATT	TGCCAGGAAG.	ATGGAAACC - AA	AAATGATAGG	GGGAATTGGA	GGTTTT
ο ,	A <mark>gatacaggagca</mark>	GATGATACA	GTATTAG - AGA	AATGAATTT	G C C A G G A A G A	T <mark>gg</mark> aaacc-aa/	AATAGATA-G	GGGAATTGGA	GGTTTT
7	TATTAGATACAGG	AGTCAGATG	ATACAGTATTA	G T A G A A A T G	AATTTGCCAG	GAAGATGGAAAI	CC - AAAATGA	I- AGGGGGGAAT	TGGAGG
6	AGATACAGGAGCA	GATGATACA	GTATTAG - AGA	AATGTAATT	TOCCAGGAAG.	A TGGAAACC · A	AAATGATAGG	GGGTAATTGG	AGGTTT
7	TAGATACAGGAGC	AGACTGATA	COGTATTAG - A	GAAATGAAT	TTAGCCAGGA.	A <mark>gatggaaacc</mark>	AAAATGATA	GGGGGGAATTG	GAGGTT
6	TTAGATACAGGAG	CAGATGATA	CACGTATTAG -	AGAAAATGA	ATTTGCCAGG.	AAGATGGAAACI	CCAAAATGAT	AGGGGGGAATT	GGAGGT
2	3 A T A C AG G AG C AG	ATGATACAG	TATTAG - AGAA	ATGAATTTG	CCAGGAAGAT	GGAAACC - AAA	ATGACTAGGG	GGAATTGGAG	GTTTTA
0	AGATALAGGAGTU	AGATGATAL	AGTATTAG - AG	AAATGAATT	TOCCAGGAAG.	ATGGAAACC - AA	AAATGATAGG	GGGGATTGGA	GGTTTT
4	AGATACAGGAGCA	ACATCATACA	AUTATTAG A A	AAATGAATT	CCAGGAAGA	TechAACCCAA	AATGATAGG	GGGAATTGGA	GTTTTA
9	ATACAGGA, CAG.	TGATACAGT	ATTAG. AGAAA	CTGAATTTG	CCAGGAAGAT	GAAACC. AAAA	AT. ATAGGGG	GAATTGGAGG	TTTTAT
1	SATACAGGAGCAG	ATGATACAG	TATTAG. AGAA	ATGAATTTG	CCAGGAAGAT	GGAAACC. AAAA	ATGATAGGGG	GGAATTGGAG	GTTTTA
1	ATACAGGAGCAG	ATGATACGA	GTATTAG - AGA	AATGAATTT	GCCAGGAAGA	TGGAAACC-AAA	AATGATAGGG	GGAATTGGAG	GTTTTA
3	AGATACAGGAGCA	GATGATACA	GTATTAG - AGA	AATGAATTT	GCCAGGAAGA	TGGAAACC - AA	AATGATAGGG	GGGAATTGGA	GG . TTT
4	AGATACAGGAGCA	GATGATACA	GTATTAG - AGA	AATGAATTT	GCCAGGAAGA	TAGGAAACC - AA	AAATGATAGG	GGGAATTGGA	GGTTTT
0	AGATACAGG TAGG	CCAAGATGA	TACAGTATTAG	- AGAAATGT	AATTTGCCAG	GAAGATGGTAA	ACC - AAAATG	ATACGGGGGA	ATTOGA
2	A <mark>gatacaggag</mark> ca	GATGATACA	GTATTAG - AGA	AATGAATTT	G C C A G G A A G A	TGGAAACC - AAA	AATGATAGGG	GGAATTGGAG	GTTTTA

Issues with Multiple Alignments of short pyrosequencing reads

- Huge number of reads: ~100,000 reads in a single run
- Out of box alignment software are not feasible :
- Because of high complexity. Most are of the order of O(N⁴) e.g. Muscle, Clustalw
- Do not give accurate alignments for reads.
 - Primary reason: Do not take into account the position of the reads w.r.t. genome.

Pyro-Align Algorithm

- Based on the parallel framework of Sample-Align-D algorithm
 - Sample-Align-D gives super-linear speed-ups on multiprocessors; hence gives speed advantages when used on sequential machines
- Assumptions:
 - The original genome or the wildtype is available
 - The reads are in 'forward' orientation

Pyro-Align Algorithm sketch

- Align each read to the reference genome, using semi-global alignment.
 - This will place the reads in correct positions

>Do a Hierarchical Progressive alignment:

- Reorder the reads using the starting positions of the reads to 'generate' a guidance tree.
- >Do pairwise alignments according to the tree.
- >Do profile-profile alignments in a hierarchical fashion

Hierarchical Progressive alignment

Pairwise alignment

Pyro-Align Algorithm Complexity Analysis

- Semi-global alignment = O(N L_R L_G)
- Clustering & Reordering = $O(N+NL_G)$
- Pairwisealignments $= O(N L_R^2)$
- Profile-Profile alignments = $O(N \log N L^2_G)$
- Total Asymptotic Complexity= O(N log N L^{2}_{G} + N L^{2}_{R})
- Where:
- N= number of reads
- L_R = Average length of reads
 - I _I /I //I

Quality Assessment

- Objective:
 - To access the quality of the alignments w.r.t the original genome
 - Ensure that the system is able to handle reads from multiple haplotypes

• Problems:

- Ground truth for the alignments is not available(cannot be done with eyeballing due to large number of reads)
- Standard benchmarks such as Balibase or Prefab cannot be used.

Quality Assessment

- We choose HIV pol gene with length of 1970bp as wildtype for the experiments
- Four sets of genomes from the wildtype are produced at 3%, 5%, 7% and 10% mutations.
- These mutated genomes are used to produce the reads.
- The reads are aligned and the consensus from the reads is compared with the reference genome.

Genomes obtained from different mutations of the wildtype

The consensus obtained from the alignment is compared with the mutated genomes

Results

Successful alignment of reads from mutated genome reads as well as the mixture.

read_0863 beg 189 length 250/1-250	T-GG-A-C-AT	- AAA - G - C - T - A	- TA- GG-	TA-G-A-	G - T - A -	TTA-GTA-	GG - <mark>A</mark> - CC - 1	A - C - A - C C	- T - G - T -	C - AA - A - C	A -
read_0552 beg 187 length 250/1-250	T-GG-A-C-AT	· AAA · G · C · T · A	- TA - GG -	TACG-A-	G - T - A -	TTA-GTA-	G G - <mark>A</mark> - C C - 1	A - C - A - C C	- T - G - T -	C - AA - A	A .
read_0513 beg 191 length 251/1-251	T-GG-A-C-AT	· AAA · G · C · T · A	· TA · GG ·	TA-G-A-	G . <u>.</u> . <mark>A</mark> .	TTA-GTA-	GG · ACCC · 1	A · C · A · C C	. T . G . T .	C - AA - A - C	A -
read_1463 beg 192 length 250/1-250	T-GG-A-C-AT	· · A A · <mark>G</mark> · C · T · A	· TA · GG ·	TA-G-A-	G - T - A -	TTA · GTA ·	GG · A · CC · 🕇	A · C · A · C C	. T . G . T .	C - AA - A - C	A -
read_0642 beg 192 length 252/1-252	T-GG-A-C-AT	· AAA · <mark>G</mark> · C · T · A	• T A • G G •	TA-G-A-	G - T - A -	TTA-GTAG	GG · A · CC · 1	A · C · A · C C	. T . G . T .	C - AA - A - C	A -
read_1683 beg 192 length 253/1-253	T-GG-A-CGAT	· AAA · <mark>G</mark> · C · T · A	• T A • G G •	TA-G-A-	G - T - A -	ΤΤ	GG - <mark>A</mark> - CC - 1	A · C · A · C C	. T . G . T .	C - AA - A - C	A -
read_0720 beg 196 length 248/1-248	T - GG - A - C - A T	· AAA · <mark>G</mark> · C · T · A	· TA · GG ·	TA-G-A-	G - T - A -	TT··GTA·	GG · A · CC · 1	A · C · A · C C	. T . G . T .	C - AA - A - C	A -
read_0263 beg 197 length 249/1-249	TAGG - A - C - AC - T	· AAA · <mark>G</mark> · C · T · A	- TA - GG -	TA-G-A-	G - T - A -	TTA-GTA-	G G - <mark>A</mark> - C C - 1	A · C · A · C C	. T . G . T .	C - AA - A - C	A -
read_0320 beg 197 length 251/1-251	T-GG-A-C-AT	• <mark>AAA • <u>•</u> • C • T • A</mark>	- TA-GG-	TA-G-A-	G - T - A -	TTA-GTA-	G G - <mark>A</mark> - C C - 1	A - C - A - C C	- T - G - T -	C-AA-A-C	<mark>A</mark> -
read_0844 beg 197 length 255/1-255	T-GG-A-C-AC-T	· AAA · <mark>G</mark> · C · T · A	- TA-GG-	TA-G-A-	G - T - A -	TTA - GTA -	G G - <mark>A</mark> - C C - 1	A - C - A - C C	- T - G - T -	CGAA-A-C	A -
read_0349 beg 197 length 252/1-252	TGGG-A-C-AT	· AAA · <mark>G</mark> · C · T · A	- <mark>T</mark> A - <mark>GG</mark> -	TA-G-AC	G - T - A -	TTA-GTA-	66 - <mark>A</mark> - CC - 1	A - C - A - C C	• T • G • T •	C - AA - A - C	<mark>A</mark> -
read_1694 beg 198 length 252/1-252	T-GG-A-C-AT	· AAA · G · C · T · A	- TA-GG-	TA-GTA-	G - T - A -	TTA - GTA -	66 · <mark>A</mark> · C C · 🚺	A - C - A - C C	. T . G . T .	AA - A - C	<mark>A</mark> -
read_1188 beg 198 length 253/1-253	T-GG-A-C-AC-T	· AAA · <mark>G · C · T ·</mark> A	- <mark>T A</mark> - <mark>G G</mark> -	T A - G - A -	G - T - A -	TTA-GTA-	GG - <mark>A</mark> - CC - 1	A - C - A - C C	· T · G · T ·	C - AA - A - C	A -
read_0549 beg 203 length 256/1-256	· · · <mark>G G</mark> · <mark>A</mark> · C · <mark>A</mark> · · T	· AAA · <mark>G T C · T · A</mark>	• TA • GG •	TA-G-A-	G - T - A -	TTA · GTA · ·	66 · <mark>A</mark> · CC · 1	A · C · A · C C	· T · G · T ·	C - AA - A - C	A -
read_1818 beg 203 length 252/1-252	<mark>G G</mark> - <mark>A - C - A</mark> T	· AAA · G · C · T · A	• T A • • G •	TACG-A-	G - T - A -	TTA - GTA -	GG · <mark>A</mark> · CC · 1	A - CGA - CC	· T · G · T ·	C - AA - A - C	A -
read_0370 beg 204 length 249/1-249	· · · G · A · C · A · · T	· AAA · G · C · T · A	• <mark>T A</mark> • G G •	TA-G-A-	G - T - A -	TTA-GTA-	GG · A · CC ·	A · C · A · C C	· T · G · T ·	C - AA - A - C	<mark>A</mark> -
read_0596 beg 205 length 250/1-250	<mark>A . C</mark> . A T	· AAA · <mark>G · CG T</mark> · A	• T A • GG •	TA-G-A-	G - T - A -	TTA · GTA ·	GG · A · CC · 1	A · C · A · C C	· T · G · T ·	C - AA - A - C	A -
read_1416 beg 205 length 255/1-255	· · · · · <mark>A · C · A</mark> · · T	· AAA · <mark>G · C · T ·</mark> A	· TA · GG ·	TA-G-A-	G · T · A ·	TTA · GTA · I	GGTA - CCG	A · C · A · C C	· TAG · T ·	C - AA - A - C	A -
read_0574 beg 206 length 253/1-253	· · · · · · · C · A · · T	· AAA · <mark>G · C · T ·</mark> A	· TA · GG ·	TA-G-A-	G · T · A ·	TTA - GTA -	GG · A · CC · T	A · C · A · C C	· T · G · T ·	C A - A - C	A -
read_0087 beg 207 length 254/1-254	<mark>A</mark> T	· AAA · <mark>G</mark> · C · T · A	• TA • GG •	TACG - A -	G - T - A -	TTA · GTA · ·	GG · A · CC ·	A · C · A · C C	· T · G · T ·	C - AA - A - C	<mark>A</mark> -
read_1256 beg 207 length 251/1-251	· · · · · · · · · A · · T	• AAA • <mark>G • C • T •</mark> A	- TA - GG -	TA·G·A·	G - T - A -	TTA · G · A ·	GG · A · CC ·	A · C · A · CC	· TAG · T ·	C - AA - A - C	A -
read_1328 beg 208 length 259/1-259		• AAA • <mark>G • C • T •</mark> A	- TA - GG -	TAIGIAI	G - T - A -	TTACGTA-	66 · <mark>A</mark> · CC · 🛛	A · C · A · C C	· T · G · T ·	C - AA - A - C	A -
read_1274 beg 209 length 252/1-252		• AAA • <mark>6</mark> • C • T • A	· TA · GG ·	TA-G-A-	G · T · A ·	TTA · GTA ·	GG · <mark>A</mark> · CC · ·	A · C · A · CC	· T · G · T ·	C - AA - A - C	A -
read_0560 beg 209 length 254/1-254		• 🗛 🗛 • 💁 • 🕻 • T • A	- TA- GG-	TA-G-A-	G - T - AC	TTA - GTA -	G G - <mark>A</mark> - C C - 1	A · C · A · CC	· T · G · T ·	C - AA - A - C	A -
read_1426 beg 213 length 252/1-252		· · · · · · · <mark>C</mark> · <u>T</u> · A	• TA • GG •	TA-G-A-	G - T - A -	TTA · GTA ·	GG · A · CC ·	A - C - A - C C	· T · G · T ·	C - AA - A - C	A -
read_0893 beg 215 /ength 250/1-250		<mark>A</mark>	- TA- GG-	TA-G-A-	G - T - A -	TTA-GTA-	G G - A - C C - T	A - C - A - C C	· T · G · T ·	C - AA - A - C	A -
read_1490 beg 216 length 258/1-258			- TA- GG-	TA-G-A-	G - T - A -	TTA - GTA -	G G - <mark>A</mark> - C C - T	A - C - A - C C	· T · G · T ·	C - AA - A - C	A -
read_0547 beg 216 length 254/1-254			• TA • GG •	TA - G - A -	G - T - A -	TTA - GTA -	G G - <mark>A</mark> - C C - T	A - C - A - C C	· T · G · T ·	C - AA - A - C	· · A ·
read_0069 beg 218 length 254/1-254			· · · · GG ·	TA - G - A -	G - T - A -	TTA-GTA-	G G - A - C C - T	A - C - A - C C	· T · G · T ·	C - AA - A - C	A .
read_0028 beg 218 /ength 254/1-254			<mark>GG</mark> .	TA · G · A ·	G - T - A -	TTA-GTA-	G G - <mark>A</mark> - C C - 1	A - C - A - C C	· T · G · T ·	C - AA - A - C	· · A ·
read_0116 beg 220 length 256/1-256				TA · G · A ·	G - T - A -	TTA - GTA -	G G - A - C C - T	A - C - A - C C	· T · G · T ·	C - AA - A - C	A .
read_0613 beg 222 length 257/1-257				••• <mark>•</mark> • <mark>•</mark> •	G - T - A -	TTA-GTA-	GG - A - CCT	A - C - A - C C	· T · G · T ·	C - AA - A - C	· · A ·
read_0382 beg 222 length 264/1-264				· · · G · A ·	G . T . A .	TTA-GTA-	GG - A - CC - 1	A - C - A - C C	· T · 📴 · T ·	C - AA - A - C	- <mark>G</mark> A -
read_0340 beg 222 length 249/1-249				• • • 📴 • 🗛 •	🖸 · T · A ·	TTA-GTA-	GG · A · CC ·	A - C - A - C C	· T · G · T ·	C - AA - A - C	· · A ·
read_0454 beg 225 length 251/1-251					· · T · A ·	TTA-GTA-	GG · A · CC ·	A - C - A - C C	· • • • • • •	C - AA - A - C	· · A ·
read 1909 beg 225 length 253/1-253					T - A -	TTA · GTA ·	GG - 🗛 - CC - 🚺	A - CGA - CC	- T - G - T -	C - AA - A - C	A -

Ongoing Works—Sketch of parallelization of pyro-Align

- Proposed Approach:
- In parallel on multiple processors, align each read to the reference genome, using semi-global alignment.
- Do a Parallel Hierarchical Progressive alignment using sample-align-D
- We expect super-linear speedups for parallel pyro-align giving enormous advantage in terms of timing and memory

Conclusions and Future work

- A low complexity algorithm for aligning huge number of pyrosequencing reads is presented.
- Successfully aligned the reads from mutated and mixture of mutated genomes.
- Presented the quality assessment and compared with pairwise alignments
- We are working on parallelization of the algorithm

Acknowledgements

- We would like to thank the Beerenwinkel group for the support at Biosystems science and engineering dept at ETH Zurich.
- Thanks also goes to Nick Eriksson of the University of Chicago
- Special thanks to Tanya Berger Wolf of Laboratory for Computational Population Biology, UIC.

