Analysis of microarray gene expression and clinical data to identify biomarkers for Chronic Fatigue Syndrome
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INTRODUCTION
Chronic Fatigue Syndrome (CFS) is a disease that affects a significant proportion of the population in the United States and has detrimental economic effect on society [1]. Assessment of patients and identification of illness is complicated by the lack of well established characteristic symptoms [2]. Moreover, definition of CFS as a unique disease is not obvious as it may represent a common response to a collection of other illnesses [2]. 
Establishing well defined measures of CFS is crucial for the assessment of this illness. That was the main purpose of the study conducted by the Centre for Disease Control (CDC) in Wichita, KS. To achieve this goal different sources of data have been included in the study: clinical assessment of the patients, microarray gene expression profiles, proteomics data, and selected single nucleotide polymorphisms (SNPs). 
The focus of our analysis is integration of clinical and microarray data to identify biomarkers for Chronic Fatigue Syndrome and its symptoms. 
DATA
We are deeply indebted to Earl Glynn for making his excellent description of the CAMDA data publicly available on the CAMDA 2006 website [3].
Clinical data

Clinical data is available for 227 subjects recruited for the study according to the criteria described in Reeves et al. [1]. There are two sources of information for each subject: clinical assessment and blood evaluation. We focused on the analysis of the clinical data. This dataset consists of 84 categorical variables which include summary variables such as intake illness classification and empirical illness classification as well as variables reflecting medical symptoms on which these summaries are based. These observations were obtained from the standardized questionnaires completed by patients. In this study we are focusing on the analysis of intake illness classification and speed of symptom onset. Intake illness classification contains information about disease group of a subject based on previous surveillance study and used in the recruitment process [1]. This variable has five levels: Ever CFS, Ever insufficient symptoms or fatigue (ISF), Ever CFS with major depressive disorder with melancholic features (MDDm), Ever ISF with MDDm, and Nonfatigued. Speed of symptom onset has two levels: Gradual and Sudden.
Microarray data

The microarray data for this study contains gene expression profiles obtained from peripheral blood samples. It has been previously shown that peripheral blood is suitable for studying psycho-neuroendocrine-immune processes that are involved in CFS [4].
The dataset consists of 177 arrays. The format and gene expression values in one of these arrays differ from other arrays suggesting they have been previously modified. Following suggestion of data providers this array was discarded. That does not have an impact on the analysis of differential expression of genes under various conditions since there is no clinical or blood evaluation data available for the subject with this array. 
There were 192 blank spots on each array, which were deleted from all analyses. There were 265 control spots. They showed typical expression levels and random spatial location and were retained. One array which differed suspiciously from the others was removed, leaving 176 arrays and 19968 spots to be analyzed.
ANALYSIS

Preprocessing and Normalization

We used variance-stabilizing single-channel normalization method, vsn [5,6]. We used scatter-plots comparing intensities of replicate arrays to assess the normalization methods and background adjustments. Based on these inspections, we chose to adjust for print-tip, and not use the background values. Box-plots of the normalized data are shown in Figure 1.
Gene Filtering by Intensity

To select genes which showed significant expression we used a simple mixture model. In the context of multiple testing Cox and Wong (2004) present a simple method for choosing non-null test statistics [7]. We adapt their method to filtering genes for the CAMDA 2006 expression data. Cox and Wong assume a mixture of statistics which come from a null distribution with probability 
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 and an alternative distribution with probability 
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. Both distributions are normal with unit variance. The null distribution has mean 0 and the alternative has a positive mean
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. To fit into their framework we must transform our intensities to have unit variance and so that unexpressed genes have mean zero.
Figure 1. Box-plots of the normalized data
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To this end, we used the background mean to estimate the mean of the unexpressed genes, and the variance of all genes. We first applied the same transformation to the raw background expression that was used by vsn to normalize the intensities. Then the transformed background distribution was used to represent the null distribution. The intensities were then standardized using the mean and variance of null distribution. The property that vsn stabilizes variances supports the application of the null variance to all genes.

After standardization, the intensities are taken to follow the model given by Cox and Wong. We used their moment estimator to estimate 
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, the proportion of expressed genes, and the mean 
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 of the standardized expressed genes.

We estimate about 60% of the genes to be expressed. This is an overestimate since the spot measurements are probably higher than the background measurements, even for unexpressed genes However, our estimate does serve as an upper bound on the number of expressed genes.
Cox and Wong use the estimates of 
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 to define thresholds for declaring genes to be expressed. One method is to compute the log-likelihood ratio for each gene. A log-likelihood ratio greater than zero favors the hypothesis that the gene is expressed. This criterion yields 10116 expressed genes for our data. This subset had a false discovery rate of .001.

Filtering to obtain genes showing high co-expression

For the 10,116 genes deemed to have discernable expression level we apply 2-means clustering to the gene variances to isolate a group of 240 high variance genes. For each of these genes, we totaled the absolute values of its covariances. We then used 2-means clustering on these covariance sums to isolate a set of 66 genes which showed a strong tendency to interact with other genes. A heatmap in Figure 2 shows that these 66 genes share similar behavior, partitioning the arrays into 2 sets.
Figure 2. Heatmap of 66 genes
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We used a tree classifier to predict the observed partition of arrays using the intake classification. The model chose a split on CFS with major depressive disorder with melancholic features versus the other intake classes. Cross-validated error rate for the model was .34. Guided by this we tested the 66 gene set for differential expression in CFS with melancholic depression patients. The following 26 probes under-expressed for those patients with q-values less than .05: AK025539, NM_002373, D88435, AK054915, NM_080808, D87073, XM_027181, AF312024, NM_000660, AF155650, XM66226, NM_005394, AF225424, BC006327, AJ313463, AF401350, BC007767, AF485338, NM_001886, BC007026, M67439, AF038869, AB039371, AF117756, AF009301, AK026945.
We tested these genes for differential expression between CFS with melancholic depression and IFS with melancholic depression, to see whether we were finding genes for depression only, or genes specifically relevant to CFS. The smallest q-value was 0.15. However, seven of the 26 genes were under-expressing for the CFS depressed patients, with unadjusted p-values less than 0.05. They were AK025539, NM_002373, D88435, AK054915, NM_080808, XM_027181, AF312024, where interestingly NM_002373 encoding for microtubule-associated protein 1A has expression pattern exclusively in the brain.
Differential expression analysis

Four of the 176 arrays we included in our gene expression profiling have no associated clinical or blood evaluation data available and therefore are excluded from the following analysis. Among the remaining 172 arrays there are 8 sets of duplicate arrays for same subjects. We investigated the effect of taking into account this information and treating double arrays for the same subject as biological replicates. However, this did not have a significant influence on the results concerning gene differential expression. At the same time it slowed down the computational process substantially since a mixed model with random effects had to be introduced on a gene by gene basis to account for the correlation between duplicate arrays. Thus, considering the substantial increase in computational time needed for the explicit modeling of correlations in the mixed effect framework and taking into account the robustness of the results suggested by our sensitivity analysis, we chose to consider these arrays as independent. We considered 172 arrays and 10116 genes that remained after filtering for the analysis of differential gene expression.
The goal of this study is to identify biomarkers that could predict the disease status of a patient. Therefore, we are interested in discovering the genes that have differential expression among different disease classes. Available disease classification consists of intake and empirical classification. However, both of these approaches to classifying patients are based on self administered questionnaire and are not reliable characteristics of different groups. Symptoms reported by patients may not be reliable and are possibly influenced by exaggerating effect of self-reporting of subject under study. As has been reported in several previous studies [2,8] Chronic Fatigue Syndrome may not represent a single well defined disease but rather a response to a set of preexisting medical conditions. In addition, presence of major depressive disorder with melancholic features in a group of patients makes assessment of symptoms and classification of illness less effective. 

We analyzed expression profile for 10116 active genes with respect to several hypotheses concerning intake diagnosis of the patients as well as speed of symptom onset. Available publications [8] identify the speed of fatigue onset as an important symptom of a disease that can be predicted based on gene expression. We tested this hypothesis and based our conclusions about the differential expression of the genes on p-values adjusted for multiple testing using Benjamini and Hochberg approach [9]. The tests are based on the linear models fitted on a gene by gene basis and empirical Bayes moderated t-statistic. We used the R package limma [10, 11].

We also analyzed 117 genes reported as being significantly differentially expressed in subjects with sudden disease onset versus gradual onset in Whistler et al. paper [2]. Expression profile is available only for 38 of these genes in the present study. Therefore, we carried the analysis of these 38 genes under the null hypothesis that there is no differential expression for subjects with sudden fatigue onset compared to subjects with gradual onset. In this case there is no need to use correction for multiple testing using false discovery rates as there are only 38 genes under investigation on which we have an a priori hypothesis.
Two-way clustering used for 117 genes and reported in the same paper identified 2 groups based on the symptom onset variable. However, this is an expected result since these 117 genes were selected based on their differential expression for this characteristic. 
RESULTS
Speed of symptom onset analysis:

Comparison of the 38 genes described above to the set of active genes remaining for analysis after preliminary filtering yielded 17 genes common to both sets. Table 1 shows the results for analysis of the 38 significant genes from the paper with raw p-values reported. Four genes have been identified as significantly differentially expressed between group with gradual onset and group with sudden symptom onset at 10% error rate. The last three genes in the table appear in the intersection of significant genes from the paper and active genes described above.
Table 1. Significantly differentially expressed genes for speed of symptom onset: gradual vs. sudden, from a set of 117 genes reported in the study by Whistler et al. [10]
	Probe ID
	p-value
	Description

	NM_003380
	0.032
	Intermediate filament, vimentin

	NM_001267
	0.060
	Cartilage matrix protein, Chondroadherin

	NM_000135
	0.062
	Fanconi anemia, complementation group A

	NM_001095
	0.093
	Amiloride-sensitive sodium channels 2, neuronal



We also examined all active genes remaining after filtering for differential expression between the groups with sudden and gradual speed of symptom onset and discovered 2 significant genes that are consistently differentially expressed at 11% error rate under various schemes of analysis: including all 172 arrays in the analysis to improve the estimate of the variance as well as including only women with CFS to replicate the analysis presented in Whistler study. Table 2 shows the results for these genes.
Upon detailed re-examination of the hybridization signals of genes in Table 1 and 2 on raw microarray data, we noticed that NM_000135 and AF141870 genes show signal-to-noise ratio (S/N) greater than 2.5 only in 6 of the 128 arrays with the speed of symptom onset information available.  Therefore, caution should be exercised. Results of this investigation for other genes (NM_003380, NM_001267, NM_001095, L10334) show that signal was of good quality and support their significance.
Table 2. Significantly differentially expressed genes for speed of symptom onset: gradual vs. sudden.

	Probe ID
	p-value
	Description

	L10334
	0.1125
	Neuroendocrine-specific expression pattern

	AF141870
	0.1125
	Homo sapiens translational control protein 80


Intake classification analysis:
We have identified differentially expressed genes for 3 comparisons of intake classification groups. The first set contains 97 genes discriminating between the CFS patients with major depressive disorder with melancholic features and non-fatigued subjects at 10% false discovery rate. Among these genes 9 are significant at 5% false discovery rate. The second set of 10 genes is differentially expressed for group with insufficient symptoms or fatigue with MDDm compared to control group at 10% FDR with 3 significant genes at 5% FDR. The last set contains 11 genes showing differential expression for subjects with ISF compared to subjects with ISF and MDDm at 10% FDR and 8 of these genes are significant at 5% FDR. Figure 3 shows a Venn diagram for significantly differentially expressed genes at 10% false discovery rate for the 3 hypothesis.

These results suggest that major depressive disorder with melancholic features may have greater effect on gene expression than the presence of chronic fatigue syndrome. It would have been interesting to have a sample of patients with depressive disorder without chronic fatigue syndrome.
DISCUSSION

Integration of microarray gene expression data and clinical illness assessment data provides a great opportunity for identification of biomarkers for complex medically unexplained diseases such as Chronic Fatigue Syndrome. 

We have identified a set of genes with different expression profile in patients with sudden CFS symptom onset compared to gradual. Some of these genes are multifunctional and are highly expressed in many tissues. For example, AF141870 may facilitate double-stranded RNA-regulated gene expression at the level  of post-transcription. It can also act as a translation inhibitory protein which binds to coding sequences of acid beta-glucocidase (GCase) and other mRNAs and functions at  the initiation phase of GCase mRNA translation, probably by inhibiting its binding  to polysomes. And it can regulate protein arginine N- methyltransferase 1 activity. Another gene, L10334, seems to have expression specific to neuroendocrine gland tissues e.g. pituitary gland. Thus, it is involved in psycho-neuroendocrine-immune processes that may be dysregulated in presence of CFS [4]. 

Figure 3. Venn diagram of significantly expressed genes for 3 comparisons of disease classes.
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As discussed in Whistler et al. [8], identification of genes with different expression profile among patients with sudden and gradual symptom onset may reflect heterogeneity of CFS illness. This fact combined with possibly biased intake illness classification could explain inability to identify significantly differentially expressed genes between patients with CFS and other groups. Significant genes discovered in intake illness classification analysis are differentially expressed in subjects with major depressive disorder with melancholic features. Presence of this disorder is exclusionary for CFS and may be overshadowing manifestation of disease of interest. However, identified genes could be associated with depressive disorders and serve as biomarkers. In addition, some of the discovered genes have been identified as specific to the brain and associated with neurological diseases and thus related to depressive disorders as well as CFS.
Results of this study support the belief that Chronic Fatigue Syndrome is a heterogeneous disease with complex regulation process. Gene expression profiling offers a complementary approach to illness classification and diagnosis to existing symptom-based methods.   
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