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ABSTRACT 
Malaria is responsible for half a billion infections and two million 
deaths each year. Understanding the biology of P. falciparum is 
critical if effective vaccines are to be developed to fight against 
this aggressive parasite. New information about the regulatory 
mechanisms of P. falciparum aids the elucidation of the 
fundamental metabolic and transcriptional pathways which we 
must understand to design better treatments and prevention. Of 
particular importance is the intraerythrocytic development cycle 
(IDC), the part of its life spent in the blood stream of unwitting 
mammals, which is responsible for the physical symptoms 
experienced by infected individuals. The goal of this investigation 
is to examine spatially dependent co-regulation of gene expression 
over the 48-hour IDC. Correlation between gene expression and 
gene location over a few genes demonstrates evidence of co-
regulated genes or operons, while correlation over many genes 
may demonstrate evidence for some other transcriptional 
regulation mechanism.  We develop a visualization and statistical 
testing methodology to examine expression-location correlation 
which we apply to a time-course microarray study of the IDC 
transcriptome. Contrary to the current paucity of evidence, our 
findings show evidence for spatial correlation. The biological 
implications of detected blocks of moderate but consistent spatial 
correlation provide novel insights into the transcriptome of P. 
falciparum.  
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1. INTRODUCTION 
Understanding the regulatory mechanisms in P. falciparum helps 
identify new targets for both preventing or stopping malaria 
infections.  Examining regulation of transcription is a key to 
achieving these goals, and there are many interesting 
transcriptional phenomena in Plasmodium.  Protozoa such as 
Plasmodium are capable of regulating gene expression by altering 
the structure of its chromosomes.  For example, expression of the 
var cell surface protein of Plasmodium is regulated by a silencing 
mechanism [5].  In other eukaryotes, gene silencing and related 
epigenetic phenomena are typically mediated by covalent 

modification of histones that can spread along chromosomes, 
altering the accessibility of genes to the transcription apparatus 
[7]. Whether this type of regulation extends beyond the var genes 
to other genetic loci remains to be determined.  This investigation 
explores the basic properties of location dependent transcriptional 
regulation by searching for both small chromosomal areas with 
highly correlated gene expressions, as well as searching for larger 
chromosomal regions with correlated gene expressions.  Bozdech 
et al [2] used a heuristic to perform a limited search for spatial 
correlation and found a few places among the 14 linear 
chromosomes of P. falciparum where there was evidence of 
spatial correlation.  Other approaches based on a simple Pearson 
correlation have been proposed [1].  Without a formal measure of 
statistical significance, however, it will be difficult to apply the 
approach on a wide-scale basis. We consider an analogous 
examination of pairwise correlations along each chromosome, 
with the addition of a permutation test to assess the significance of 
the result.  We also consider a more formal covariogram 
approach. 

Analytical Objective: The overall objective is to develop a 
statistical framework to examine spatial correlation between gene 
expression and location along chromosomal regions. To this end, 
we develop methods to analyze (1) pairwise correlation between 
adjacent genes without regard for the distance between them, (2) 
pairwise correlation between adjacent genes with distance 
restriction between them, (3) correlation through a formal 
covariogram  function. An added benefit of the methods is their 
use in detecting possible errors in annotation as may occur when 
one gene is accidentally annotated as multiple separate genes. 

2. METHODS 
2.1 Data Pre-Processing 
To perform this analysis, it was necessary to create a data matrix 
which combined information from the gene expression with the 
gene locations.  The normalized quality-control microarray data 
produced by Bozdech et al [2] was combined with the P. 
falciparum annotated nucleotide sequence [7] to create a joint 
dataset.  This dataset was created by matching the unique gene 
identifiers found at http://plasmodb.org from the provided gene 
expression data with the annotations in the sequence data, creating 
a data matrix for 4457 unique genes. The start of a gene was 
defined as the end of the open reading frame closest to the 5’ end 
of its strand.  That is, an open reading frame on [100,200] would 
start at 100 if it is located on the Watson strand and at 200 if it is 
located on the Crick strand. For this investigation, the Watson 
strand is the reference strand, with all chromosomal locations 
listed for that strand. 
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2.2 Correlation Analysis 
In this article we use Pearson correlation as a measure of distance 
between two expression profiles.  Other measures of distance are 
possible, for example Euclidean distance. 

2.2.1 Adjacent Pairwise Correlation 
To analyze the pairwise correlations between adjacent genes we 
created a vector of pairwise Pearson correlations for each 
chromosome.  This vector was constructed by finding the n-1 
(adjacent) pairwise correlations among the n genes on each 
chromosome. Figure 1 shows the correlations by chromosomal 
order using chromosome 2 as the example; the color-coding 
identifies which strand of the chromosome each gene is on.  Note 
the highly correlated clump found previously by [2] containing 6 
genes at about the 42nd location; there are 5 clustered correlations 
in a row, which we denote as a 5-clump.  The pairwise 
correlations of interest to this investigation were 2, 3, 4 and 5- 
clumps or k-clumps in general.  Further we limit these k-clumps to 
those with correlations all within a window, d, with at least one 
correlation above some threshold �.  Formally, we define a k-
clump as k+1 consecutive genes (i1,…ik+1) with consecutive 
pairwise correlations [rj � r(ij,ij+1), j=1,…,k] satisfying the 
constraints that max(rj)-min(rl)<d with j�l, and j, l in {1,…,k} and 
that rj�� for at least one j in {1,…,k}.  Throughout our 
investigation, we searched for clumps of genes with d = 0.1, 0.2 
or 0.3, with at least one correlation above a � of 0.5. 

 
Figure 1: Pairwise correlations between consecutive genes on 
chromosome 2.  Red dots indicate that both genes in the 
correlation are on the Crick strand, purple indicates both are 
on Watson, green indicates Crick-Watson and blue, Watson-
Crick. 
Many such clumps were found using this approach including the 
said 5-clump on chromosome 2 around gene 42.  This raises the 
question of significance.  How likely is it to find k-clumps at 
random if there is no spatial correlation? For example, would we 
expect to find a 5-clump on chromosome 2 if there were no co-
regulation? If so, how many 5-clumps might we expect on a null-
hypothesis chromosome? To test the significance of the clumps of 
genes with high correlation, we developed a permutation test  

(2.2.3), of which applications are quite natural in various genetic 
contexts [3, 10].   

2.2.2 Distance-based Pairwise Correlation 
The correlations based on adjacent neighbors do not take account 
of the distance between the two genes. As such, the power to 
detect location dependent correlation may be dampened if many 
of the gene neighbors are relatively far apart. To account for inter-
gene distance we averaged all pairwise correlations among genes 
found in a moving window of length 50kb. Results for 
chromosome 6 are shown in Figure 2, and for chromosome 11 in 
Figure 3.  These analyses allowed us to find small clumps with 
high spatial correlation. The process was repeated for windows of 
various lengths ranging from 10kb to 100kb. 

 
Figure 2: The distance-based pairwise correlation plot for 
chromosome 6, over a window size of 50kb, with a lowess 
smoothed line using a span of 0.15. 
We performed an ANOVA test for linearity [9] on the distance-
based correlation data to determine if there is evidence that 
“blocks” of non-zero correlation occur along the chromosomes.  
The ANOVA test for linearity requires repeated observations, and 
we used two methods of binning to form repeated measurements.  
For the first binning, each bin contained 10 correlations, and the 
mean of the locations for the genes in these 10 correlations was 
used as the location of the bin.  In the second method, each 
chromosome was divided into 10 bins, and the location of each 
bin was determined by the mean of the locations of the genes in 
that bin. 

2.2.3 Permutation Test Algorithm 
To test the null hypothesis that there is no spatial correlation, the 
gene orderings were kept constant, while the gene expression 
profiles were permuted. Repeating this process B=1000 times 
generated a null distribution for finding k genes in a row with 
max(ri)-min(rj)<d for i, j in {1,…,k}. We also allowed for a 
parameter � that would restrict the pairwise correlations in a 
clump to be at least as great as �. We performed this test for 
k=2,…,6, for d=.1,.2,.3 and �=0.5.   

For a given k, d, � and B the permutation test was performed this 
way: 



For i=1 to B 

 a. Permute gene expression profiles 

 b. Compute pairwise correlations 

 c. Count number of k-clumps 

The permutation test can be applied to both the adjacent and 
distance-based pairwise correlation approaches. The choice 
defines step (b) in the above algorithm. The number of possible 
permutations is too large to perform an exhaustive count. 
Therefore, a random number (B) of permutations are performed. 

 
Figure 3: The distance-based pairwise correlation plot for 
chromosome 11, over a window size of 50kb, with a lowess line 
using a window size of 0.15 
 

 
Figure 4: Reference distribution used in perumtation test.  
This is for chromosome 9, for k=3, d=.1, �=.5, and 4 3-clumps 
were observed yielding an estimated p-value of 0.014. 
The null reference distribution is used to calculate a p-value for 
the number of k-clumps observed. An example of a reference 

distribution is given in Figure 4. Shown for chromosome 9 is the 
histogram for the number of times (over B permutation) a 3-clump 
occurs under the null hypothesis of no spatial correlation.  For 
example, about 125 of the B permutations has a 3-clump 
appearing two times.  To compute the p-value, we have an 
observed number of k-clumps, kobs, as well as null distribution, the 
histogram of the recorded counts of k-clumps from the 
permutation test. Let xi, i=(1,…,B) denote the number of k-clumps 
found in permutation i.  Then the estimated p-value is 

p-value=#{ xi � kobs}/B. 

2.2.4 Covariogram 
A covariogram is a function that relates correlation as a function 
of distance [4]. In this case we want to know if gene expression 
correlation depends on the distance between the two genes. The 
first approach of adjacent correlation does not account for inter-
gene distance, while the second distance-based approach depends 
on a moving window of contiguous sets of genes. Here a true 
covariogram function (�) would give the correlation between 
genes x and y given that they are d0 base-pairs apart:  

� (x, y; d0) =  r(x, y | distance(x,y)=d0) 

The assumption is that � is homogeneous with respect to location; 
that is, we assume a constant correlation between genes x and y 
that are d0base-pairs apart, no matter where the genes may be 
located on the chromosome, the only important factor being that 
they are d0 bp apart. A consequence of this assumption is that it 
makes sense to pool all correlations across the entire chromosome 
(or entire genome for that matter) that are based on pairs of genes 
d0 bp apart; by construction the moving window of the distance-
based approach does not have such an assumption. A covariogram 
was created for each chromosome in the following way. First, 
correlations were calculated for all pairs of genes within 10kb of 
each other. Then the average correlation was calculated and 
plotted against the midpoint of each interval, as seen in Figure 5.  
Note that the assumption of homogeneity may be violated, which 
will require some modifications to the method. 

 
Figure 5: Covariogram for chromosome 2 using a 50kb 
window size  



3. RESULTS 
3.1 Correlation Analysis 
A pairwise correlation plot for chromosome 2 is shown in figure 
1.   By signifying the strand orientation, we can identify features 
such as candidate operons or other co-regulated regions, as all 
genes in clumps of the same color have the same orientation. 
Results for chromosomes with significant numbers of k-clumps 
are shown in table 1.  The most interesting feature in the 
correlation plots were the 6 highly correlated genes located at 
about position 42 in the first third of chromosome two, also noted 
by Bozdech et al [2].  Based on the annotation as putative cysteine 
protease, these appear to be tandem repeats of cysteine protease.  
Also of interest were significant clusters on chromosomes 4, 9, 13 
and 14 that need to be investigated further. For most of the k-
clumps, the annotation information is not currently available.  
Figure 6 gives an example from chromosome 13.  We found six 3-
clumps on chromosome 13, yielding a p-value of 0.05.  Shown are 
the four profiles which correspond to two hypothetical proteins,  
synaptobrevin-like protein (putative) and elongation factor tu 
(putative).  

There are also 54 pairs of genes which are possibly co-regulated 
via a shared promoter region.  To identify these pairs, we used the 
criteria that each of these pairs consist of a Crick oriented gene 
followed by a Watson oriented gene, that the beginnings of the 
two open reading frames were less than or equal to 2 kb apart, and 
that the correlation between the two gene expressions was at least 
0.7.  This list of genes, their annotation information and their gene 
ontology information is provided by request. A smoother version 
of this correlation analysis is found by using the distance-based 
correlations for distances of 10 and 50kb, and averaging all 
pairwise correlations in that window.  Figures 2 and 3 show these 
results.  Note the significant reduction in noise by increasing the 
size of the window, which suggests “blocks” of correlated genes 
on some chromosomes.  Finally, for all of the chromosomes, the 
distance-based correlation was binned in two ways for the 
ANOVA test of linearity.  For each chromosome, both binning 
methods yielded p-values � 0.01, with many p-values � 1e-10. 

 
Figure 6: A 3-clump on chromosome 13, among the four genes 
shown, there are two unannotated genes (red, green), 

synaptobrevin-like protein (putative, black curve) and 
elongation factor tu (putative, blue curve). 

3.2 Covariograms 
A covariogram for chromosome 2 is shown in Figure 5.  Note the 
small spatial correlation that is present in genes from 100 kb up to 
600 kb apart.  A partial explanation of this can be seen in the 
distance-based correlation plot shown in Figure 2, where there are 
three regions of nonzero correlations, from 25-150 kb, 275-375 
kb and 450-575 kb.  The first block is rifin rich with several 
erythrocyte membrane binding proteins and many hypothetical 
proteins.  The second block appears to contain tandem repeats of 
cysteine protease, while the third block has mainly hypothetical 
proteins.   
Covariograms for chromosomes 2, 4, 5, 9 and 10 also suggest 
correlation over large portions of their chromosomes.  Examining 
the distance-based correlation plots with a large window size 
showed several of these blocks of interest.   

4. CONCLUSIONS 
Spatial correlation between gene expression profiles and 
chromosomal location may be defined in several ways. 
Considering adjacent pairwise correlations ignores inter-gene 
distance and thus may result in a loss of power to detect spatial 
correlation. Accounting for distance by restricting adjacent genes 
to be within a certain distance (bp) or through a formal 
covariogram function should increase the power. We have 
considered and compared the three approaches in the context of 
the P. falciparum time-course array study of Bozdech et al. [2]. 
Unlike previously reported findings we do find evidence of spatial 
correlation after accounting for inter-gene distance. Critical to the 
findings is a measure of statistical inference which we have 
implemented with a permutation approach.  

The analysis of the pairwise correlations shows that there are 
some statistically significant clusters of genes which are of 
interest.  More specifically, the number of clumps of a certain size 
(k) are more than expected under the null hypothesis of no spatial 
correlation. Indicating the orientation of genes by color-coding 
provides a useful visual examination of potentially interesting 
areas of spatial correlation along a chromosome.  Of particular 
interest are Crick-Watson alignments, which potentially share a 
promoter region.  Several such significant findings were observed, 
such as two genes from chromosome 6, glutaredoxin and 
translation initiation factor IF-2, both of which are involved in 
stress response [5].  Having annotation is crucial in assessing the 
biological significance of these findings.  As such, we have (Shaw 
lab) generated a gene ontology (GO) database for P. falciparum 
that allows us to annotate our spatial correlation findings with 
function. Figure 6 shows the expression profiles of a 3-clump. 
This type of result can help assess which clumps are worth 
pursuing for further investigation. Although there are many 
annotations, many more of these potentially interesting pairs still 
lack annotation. Also interesting are clumps that have genes 
residing on the same DNA strand as they may provide clues to 
polycistronic regions, and several of these have also been 
detected.  

The covariograms also provide interesting information on spatial 
correlation. Several chromosomes indicated long-range moderate 
but consistent correlation (r ~ 0.3).  This observation led us to 
examine larger window widths in our distance-based correlation, 



resulting in several relatively long “blocks” of spatial correlation.  
This block structure does not appear to be a random artifact as 
indicated by an ANOVA test for linearity on the moving window 
correlation data, with all chromosomes having significant p-
values.  This indicates that there may be some related function in 
these regions, or perhaps that there are silenced regions [5] along 
the chromosome.  More work is needed to determine the function 
of the non-annotated proteins in these regions.   

This investigation has shown that there are several types of spatial 
correlation present in the P. falciparum data.  To the best of our 
knowledge there appear to be no other formal inferential methods 
for dealing with spatial correlation dealing with sequence and 
expression data. There appear to be two types of clumps, those of 
size 2-6 with highly correlated genes and those of larger blocks of 
up to 100 kbs with moderate correlation.  
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Table 1a. Results of permutation tests, chromosomes with p-
values � 0.1, and for a correlation threshold of �=0.5, and for 
correlations within d=0.1. 

Chr k Observed p-value 

2 2 14 <0.001 

2 3 4 0.004 

2 4 2 0.006 

2 5 1 0.003 

4 2 17 <0.001 

4 3 2 0.069 

7 2 12 0.073 

8 2 13 0.004 

9 2 14 0.029 

9 3 4 0.014 

9 4 1 0.076 

10 2 19 <0.001 

13 3 6 0.050 

14 2 32 0.014 

14 3 6 0.043 

Table 2b. Results of permutation tests, chromosomes with p-
values � 0.1, and for a correlation threshold of �=0.5, and for 
correlations within d=0.2. 

Chr k Observed p-value 

2 2 24 <0.001 

2 3 8 0.002 

2 4 2 0.038 

2 5 1 0.031 

4 2 20 <0.001 

4 3 4 0.052 

6 2 14 0.073 

7 2 17 0.100 

8 2 16 0.054 

9 2 19 0.069 

9 3 7 0.023 

9 4 2 0.097 

9 5 1 0.056 

10 2 28 0.001 

10 3 7 0.038 

11 2 25 0.072 

11 3 7 0.067 

 



 
 


