@article {468, title = {PTMcode v2: a resource for functional associations of post-translational modifications within and between proteins.}, journal = {Nucleic Acids Res}, volume = {43}, year = {2015}, month = {2015 Jan}, pages = {D494-502}, abstract = {

The post-translational regulation of proteins is mainly driven by two molecular events, their modification by several types of moieties and their interaction with other proteins. These two processes are interdependent and together are responsible for the function of the protein in a particular cell state. Several databases focus on the prediction and compilation of protein-protein interactions (PPIs) and no less on the collection and analysis of protein post-translational modifications (PTMs), however, there are no resources that concentrate on describing the regulatory role of PTMs in PPIs. We developed several methods based on residue co-evolution and proximity to predict the functional associations of pairs of PTMs that we apply to modifications in the same protein and between two interacting proteins. In order to make data available for understudied organisms, PTMcode v2 (http://ptmcode.embl.de) includes a new strategy to propagate PTMs from validated modified sites through orthologous proteins. The second release of PTMcode covers 19 eukaryotic species from which we collected more than 300,000 experimentally verified PTMs (>1,300,000 propagated) of 69 types extracting the post-translational regulation of >100,000 proteins and >100,000 interactions. In total, we report 8 million associations of PTMs regulating single proteins and over 9.4 million interplays tuning PPIs.

}, keywords = {Databases, Protein, Internet, Protein Interaction Mapping, Protein Processing, Post-Translational}, issn = {1362-4962}, doi = {10.1093/nar/gku1081}, author = {Minguez, Pablo and Letunic, Ivica and Parca, Luca and Garc{\'\i}a-Alonso, Luz and Dopazo, Joaquin and Huerta-Cepas, Jaime and Bork, Peer} }