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Setting the problem in context:
The transition to precision medicine
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Molecular biomarkers

Genomic biomarkers

Mechanistic biomarkers

Precision medicine is based on a better knowledge of phenotype-genotype relationships.
This ultimately involves the knowledge of disease and drug action mechanisms

Requires of a better way of defining diseases by introducing genomic technologies in the
diagnostic procedures and treatment decisions



Single-gene biomarkers are the result of
probabilistic associations
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Pharmacogenomic Blomarkers in Drug Labeling

http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm

Most “personalized” therapies are based on this
type of biomarkers



Despite most biomarkers used are single
gene variants, most human genetic diseases
(and almost all traits) have a modular nature

« Conventional single-gene biomarkers have a demonstrated clinical utility.
However, their success is purely probabilistic, often modest and frequently lack
any mechanistic anchoring to the fundamental cellular processes responsible
for the disease or therapeutic response.

 Modular nature of genetic diseases: Causative genes for the same or
phenotypically similar diseases may generally reside in the same biological
module, either a protein complex (Lage et al, 2007), a sub-network of protein
interactions (Lim et al, 2006) , or a pathway (Wood et al, 2007)
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There are exceptions: MammaPrint, an
example of successful breast cancer decision
support test based on a multigenic biomarker

Gene expression profiling predicts

clinical outcome of breast cancer
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Enabling personalized cancer medicine
through analysis of gene-expression patterns
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Therapies for patients with cancer have changed gradually over the past decodie, movisg away bom e
sdministration of beoadly acting cytotoxic drugs towards the use of more-speckic therapies that are tarpetad
o wach turmeur. To facl itate this shilt, tests need 1o e devidoped to identily those individuais who reguice
Sharapy and those whe are most Shefy bo beneft from certain tharsgie. In particular tests that pradict the
clinical outcome tor patieots on the basks of the genes espressed by their tumours are ety 1o ncreasingly
wtfoct patent manag hecalding a new sracf fied mod

The strength of this approach is that it is unbiased: there are
no assumptions about which genes are likely to be involved in
the process of interest. For example, in a data-driven study of
the prognosis of patients with breast cancer, little was known
about the function of 15 of the 70 genes that were found to
constitute a prognostic gene-expression signature®. A
drawback of this approach is that the outcome relies solely on
the quality of the data (and the samples).

By contrast, using the knowledge-driven approach, genes that
are thought to be relevant to a particular cancer trait are
selected on the basis of the scientific literature.
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Change in the paradigm
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MammaPrint and other multigenic
biomarkers: bottom up, from genes
to functions that define one (or
several) biological modules.

Models of cell functionality:
top-down mechanism-based
biomarkers, from biological
modules to genes



Two problems: defining
functional modules and
modeling their behavior

Definition

Gene ontology:
descriptive;
unstructured
functional labels

Interactome:
relationships among
components but
unknown function

Pathways:
relationships among
components and
their functional roles

Behavior

Enrichment methods. GO, etc. (simple
statistical tests). No information on how
components relate among them

Connectivity models. Protein-protein, protein-
DNA and protein-small molecule interactions
(tests on network properties). No information
the functional roles of the components

Mathematical models. Kinetic models
including stoichiometry, balancing reactions, etc.

Computational models. Models of signalling
pathways, metabolic pathways, regulatory
pathways, etc. (executable models)



Defining the module:

Pathways: maps of cell activity

(in sickness and in health)
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Defining pathway activity

We first need a map: pathways are defined in different repositories (KEGG,
Reactome, Biocarta, disease maps, etc.)

What pathway level makes a real biological meaning?

Gene sub-pathway pathway

Enrichment methods

S T - yosm (pathway-level): Different
:;f;l RN R A R and often opposite cell
| v |\, R = | (- e~ Appaes . .
g R i behaviors are triggered by
g’ G- the same pathway.
] o me™= e —— E.g.: death and survival
2 Death
s 2 Survival
= - ' Sub-pathway
(elementary circuit)
Gene level: The same gene can trigger different (and connects stimulus to

often opposite) responses, depending on the stimulus response



Decomposition of a pathway
into their elementary circuits
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How realistic are models of
pathway activity?

RESEARCH ARTICLE

CANCER

Signaling pathway models as biomarkers:
Patient-specific simulations of JNK activity predict
the survival of neuroblastoma patients

Dirk Fey," Melinda Halasz,' Daniel Dreidax,” Sean P. Kennedy,' Jordan F. Hastings,”
Nora Rauch,' Amaya Garcia Munoz,' Ruth Pilkington,” Matthias Fischer,***
Frank Westermann,” Walter Koich,' ™ Boris N. Kholodenko,'”** David R. Croucher'***

Signaling pathways | celf fote decisions that ulg ly determine the behavior of cancer cells,
Therefore, the dynamics of pathway acivity may contain prognostically relevant information different from
that contained in the static nadure of other types of bi s To gate this hypol i, we Char-
actrized the network !at reguinted stress signaling by the c~Jun N-erminal kinase (JNK) pathway in
neurcbiastoma cells, We genorated an experimantally calibratod and validated computational model of
this network and used the modol 10 extract prognastic indormation from neuroblasto patient-specif

simulations of JNK activation. Switch-dike JNK activation mediates cell death by apoptosis. An inabiity to
Inkiate switch-ike JNK 1 in the sims B was signifs with poor overdl survival
for patients with neuroblastoma with or without MYCN amplification, indicating that patient-specific simu-
latiors of JNK activation could stratity patients. Furthermore, our analysis demonstrated that extracting
Iinformation about a signaling patiway to develop a prognostically usetul model requires understanding of
ot only c s and iated changes in the abundance or activity of the components but
#lso how those changes alect pathway dynamics,
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Beyond static biomarkers—The activity
of signalling networks as an alternate

biomarker?

Fey et al., Sci. Signal. 8, ral30 (2015).

Inability of JNK activation (that mediates
apoptosis) is associated to bad prognostic,
irrespective of MYCN amplification status
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Fig. 1. Using network descriptors of signaling pathway activation potential to predict patient response. After construction of a com-
putational model based on the validated network topology and that reproduces the signaling pathway dynamics, the model can be used
to identify network descriptors, such as the Hill coefficient, that are calculated from the dynamic simulation of the activation of a signaling



Signal propagation models of
signaling pathways

0.1 0.9

Proxies for protein activity | ; From individual gene
expression profiles...

Function

Two types of activities I
abs.com foncutarmet/ Oncotarget, Advance Publications 2016

High throughput estimation of functional cell activities reveals
disease mechanisms and predicts relevant clinical outcomes

Marta R. Hidalgo', Cankut Cubuk’, Alicia Amadoz'’, Francisco Salavert'’, José
Carbonell-Caballero’, Joaquin Dopazo' '’

Computamonal Genomics Department. Contro da Irvostigeoon Principe Folipe (CIPF), Yaonon. $6012, Spain
Functional Genomics Nodo [INE-ELIXIR-as), Vislencls, 48012. Spain
v e Diwssnins (BIER|, Cotrtro de Irvestigecetn Bomddcn s Rwd de Endermedades Qe (CIBERER)

"Huolrformution in R
Valencia. 45012, Spon
= . f— —_— . —_— . Cenespondence for Joaguen Dopaz. emalt tic
n n a l
Neywordx :gnaing patwmay. dasie mecha og = wevvel bamerba
Sq€EA

Si el faceived: Juntumbm & 2218 Acceplec: favermtar 11, 218 Aeblhed

Signal transmission j 0.07

...to profiles of circuit
M activity (and
functional activity)

Signal

Are scalable



Raw data

~.

Gene expression data are transformed
into signal activity intensities
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A simple transformation of raw data (normalization) and an algorithm for
signal propagation results in accurate estimations of circuit activities.

The same concept that MammaPrint,  risk= f{gene,, gene,, ... gene,) ’
but based on biological knowledge, is used here to estimate cell @
functional activity



Models of signaling activity provide
high-throughput estimations of intensity
activation of cell functions from gene
expression measurements

Some (not all) conventional #  With Signaling models, the intensity

cell function can be —— \ at which the whole repertoire of cell
studied, one at a time, in functions is triggered can be
individual assays measured in only one individual
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Hypothesis: the intensity at which functions are triggered
by the signaling system of the cell is more related to
phenotypes than the intensity of gene expression



Signaling activity trigger cell functions
directly related to cancer progression
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Hidalgo et al., 2017 Oncotarget

DNA replication function is a construct: the activity is inferred not measured




Actually, signal activity triggers
cancer hallmarks
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The inferred function activity (mechanistic
biomarker) is more correlated to survival
than the activity of any gene (conventional
biomarker) in the circuit
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Different cancer use different
gene expression programs to
activate the same functions
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Signal intensity over certain functions
iIncreases In the initiation of cancer while
on others increases with cancer stage

Cancer initiation
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Cancer progression



Circuit activation probabilities can
be used as features for predictors

1. Generation of features: signaling
circuit activities 2. Training set

Predictor

Case-control madel

\ Z / Gene Circuit
Continuous expression activity
. . . . variable
Circult activation -
3. Prediction

probabilities are
mechanism-based
biomarkers
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Prediction of ICg, values from the
activity of signaling circuits

SCILENTIFIC REPg}RTS

CFEN Using activation status of signaling
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Actionable models

The real advantage of models is that, the same way they can be used to
convert omics data into measurements of cell functionality that provide
iInformation on disease mechanisms and drug MoA, they can be used to
test hypothesis such as “what if | suppress (or over-express) this (these)
gen(es)?” This lead to the concept of actionable models.

By simulating changes of gene expression/activity it is easy to:

« Directly study of the consegquences of induced gene over-expressions
or KOs
« Carry out reverse studies of genes that need to be perturbed to change
cell functionalities, such as:
« Reverting the “normal” functional status of a cell
« Selectively kill diseased cells without affecting normal cells
« Enhancing or reducing cell functionalities (e.g., apoptosis or
proliferation, respectively, to fight cancer)
« Etc.



Model validation (1)

The activity of some signaling circuits is correlated with cell survival

Survival data from Achilles cell line KOs (Broad Institute) can be
compared to the change in circuit activities predicted by the model

= Onco-circuit Tumor suppressor circuit
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Functions: L : : : : :
Activation of proliferation Repression of proliferation

Essential circuits: once found, other ways of deactivating these circuits
can be find, opening the door to knowledge-based target discovery



Dependency (Demeter score)
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Model validation (2)

1) Prediction of other gene targets, whose inhibition (modeled KO)
deactivate these circuits

2) Validation of the real KO effects with Achilles Il (Tsherniak A, et al.
2017, Defining a cancer dependency map. Cell 170: 564-576)
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Interventions on pathways
made easy

Nucleic Acids Research, 2016 1
doi: 10.1093Inarlgkw3i69

Actionable pathways: interactive discovery of
therapeutic targets using signaling pathway models

Francisco Salavert'2, Marta R. Hidago', Alicia Amadoz', Cankut Cubuk’, Ignacio Medina?®,
Daniel Crespo’, Jose Carbonell-Caballero’ and Joaquin Dopazo'*"

'Computational Genomics Department, Centro de Investigacion Principe Felipe (CIPF), Valencia, 46012, Spain,
“Bioinformatics in Rare Diseases (BiER), Centro de Investigacion Biomédica en Red de Enfermedades Raras
(CIBERER), Valencia, 46012, Spain, *HPC Service, University Information Services, University of Cambridge,
Cambridge, CB3 ORB, UK and *Functional Genomics Node, (INB, PRB2, ISCIII) at CIPF, Valencia 46012, Spain

Received Fabruary 8, 2016; Revised April 13, 2016; Accepted April 22, 2016

Freely available software PathAct
http://pathact.babelomics.org/



Actionable pathway models

We can inhibit EGFR (target of Afanatib) by
reducing its activity value (0.56 in cancer).
Absolute KO value =0 e N

__ Y

Transcription

ceqiass

Estrogen signaling pathway http://pathact.babelomics.org/



Actionable pathway models
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The inhibition of the transcription sought has been attained, but six more pathways
have been affected in different ways
http://pathact.babelomics.org/



Actionable pathway models

Transcription, angiogenesis and other
are inhibited in ErbB signaling pathway

Cell cycle inhibited in 4 P
Proteoglycans in cancer pathway

Cell cycle is inhibited in Oxytocin
signaling pathway

http://pathact.babelomics.org/



Simulating drug inhibition

Q EGFr
EGFR 0.1 x

& Additional drug targets:

& Related drug list:

%= Configure target actions
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An example with SRC gene.

Predicted to be essential iIn melanoma cell lines
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Prediction of essential genes that were
never experimentally tested before

IGr39

100 - Dasatinib, a specific inhibitor
Dasatinib of SRC, demonstrates the
essentiality of SRC predicted
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gene predicts the inhibition of
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Metabolic pathways can also
be modeled

There are 94 modules that hsa_M00010
. . Citrate cycle, first carbon oxidation, oxaloacetate => 2-oxoglutarate
recapitulate the main aspects of
metabolism of carbohydrates, v, ll o
lipids, amino acids and nucleotides

Metabolic activity:

Sn = " 11— ‘ ‘(1 o na) [ Roo32s+r01900 | RO1324 |
SaEA hQOT_DN
0P~ ,’ _;:n
Where n; is the activity of the current node SR
n, A is the total number of edges arriving to [_Ro1899+R00268 | R00267 | Ro0709 |
the node that account for the flux of 0
metabolites produced in other nodes with Ho™ Y o
activity values n,.

2-Oxoglutarate

Differential metabolic activity: two conditions are compared by means of a
Wilcoxon test (FDR adjusted across modules)



Metabolic modules capture differential
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Metabolic modules also capture cell
functionality associated to cancer prognostic

High activity of Guanine ribonucleotide biosynthesis and Pyrimidine
ribonucleotide biosynthesis modules is associated to low survival.

These modules are target of Mercaptopurine and Gemcitabine.

The mechanism of action of these drugs involves inhibition of DNA synthesis
and that leads to cell death
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Prediction of gene essentiality from
metabolic pathway essentiality

Pyrimidine degradation pathway was predicted to be an onco-module in gastric
cancer cell lines. Predicted genes that switch the pathway off are DPYD, DPYS

(confirmed in Achilles) and UPB1

AGS cell line
(gastric adenocarcinoma)
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Figure 5

UPB1 encodes an enzyme (B-ureidopropionase) that catalyzes the last step in the
pyrimidine degradation pathway, required for epithelial-mesenchymal transition



Models of cell functional activity bring
the dream of precision personalized
(even individualized) treatments closer
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The real transition to precision medicine

personalization

Decisions and
actions based
on knowledge

Intuitive Medicine Empirical Medicine Precision Medicine

Tomorrow
T ——

The use of new algorithms that enable the transformation of genomic
measurements into cell functionality measurements that account for
disease mechanisms _and for drug mechanisms of action will ultimately
allow the real transition from today’s empirical medicine to precision
medicine and provide an increasingly personalized medicine




Clinical Bioinformatics Area
Fundacion Progreso y Salud, Sevilla, Spain, and...

...the INB-ELIXIR-ES, National Institute of Bioinformatics
and the BIiER (CIBERER Network of Centers for Research in Rare Diseases)
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