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Motivation

Progress in science depends on
new techniques, new discoveries
and new ideas, probably in that
order.

(Sydney Brenner, Nobel Prize Physiology or Medicine 1980)

The introduction and popularisation of high-throughput
techniques has drastically changed the way in which
biological problems can be addressed and hypotheses can
be tested. (although not necessarily the way In which we
really address or test them)

Omics technologies have a major impact in Medicine



Background:
The transition to precision medicine

Intuitive |dentification of Decisions and
Based on trial probabilistic actions based

and error patterns on knowledge

Intuitive Medicine Empirical Medicine Precision Medicine

Molecular biomarkers
Genomic biomarkers

Precision medicine is based on a better knowledge of phenotype-genotype relationships.

That is the knowledge od disease and drug action mechanisms
Requires of a better way of defining diseases by introducing genomic technologies in the

diagnostic procedures and treatment decisions




And how do we identify patterns?
Using single-gene biomarkers

B0 Genomics » Table of Phar: X

c
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[ www.fda.gov/drugs searchareas/pharma s/uem htm

Pharmacogenomic Biomarkers in Drug Labeling -

Therapeutic Biomarks
Area ferenced Subgroup § | Labeling Sections
Abacayir Infectious HLA-B HLA-B5701 alle Boxed Warning, Contraindications,
Diseases carriers Warnings and Precautions
Ado-Trastuzumab Oncology ERBE2 HER2 protein Indications and Usage, Warnings

Emtansine oversxpression or ge and Precautions, Adverse Reactions
amplifieation positi Clinical Pharmacology, Clinical
Studies
Afatinib Oncology EGFR EGFR exon 19 deletion  Indications and Usage, Dosage and
orexon 21 substitution  Administration, Adverse Reactions.
(LBSBR)positive Clinical Pharmacology, Clinical
Studies
Amitripty Psychiatry CYP2DE  CYP2D poor Precautions
metabolizers
Anastrozole Oncology ESR1 Hormone receplor- Indications and Usage, Adverse
PGR positive Reactions, Drug Interactions, Clinical
Studies
Arformoteral (1) Pulmenary UGT1A1  UGTIA1 poor Clinical Pharmacology
metabolizers
Arformoteral (2) Puimanary CYP2DE6  CYP2DS intermediateor  Clinical Pharmacology
poor metabolizers
Aripiprazole Psychiatry CYP2DE6  CYP2DE poor Dosage and Administration, Clinical
metabolizers Pharmacology
Arsenic T Oncology PML-RARA ~PML-RARatranslocation ~ Clinical Pharmacology, Indications
positive and Usage
Atomoxetine Psychiatry CYP2DE  CYP2D poor Dosage and Administration
metabolizers Warnings and Precautions, Drug

Interactions, Clinical Pharmacology

Azathioprine Rheumatology ~ TPMT TPMTintermediateor  Clinical cology, Warnings,
poor metabolizer: et Drug
Adverse Reactions, Dosage and
Administration

Boceprevir Infectious IFNL3 IL28B rs12979860 T Clinical Pharmacology
Diseases aliele carriers (C/T and
TIT genotype)
Bosutinib Oncology BCRABL1  Philadelphia Indications and Usage Adverse
chromosome positive Reactions, Use in Specific

Populations, Clinical Studies

Busulfan Oncology BCR-ABL1  Philadelphia Clinical Studies

http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm

Most “personalized” therapies are based on this
type of biomarkers



And.. where biomarkers come from?
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Our observational tools:
Different omic data

Transcriptomics

Metabolomics

Proteomics

Almost-omics



Reductionist approach to explain phenotype
(consequences) from gene inteqgrity and activity
(causes) through cell functionality (function)

i

Consequences

es the final

Causes otype

From genotype
phenotype.

..are tre
andX hose structure

ccounts for

N\’O\ : function...

o Y



c. All rights reserved.

Exome sequencing has been
systematically used to identify
Mendelian disease genes

ARTICLES

namre
genetlcs

Exome sequencing identifies the cause of a mendelian
disorder

Sarah B Ngb!?, Kati J Buckingham®19, Choli Leel, Abigail W Bigham?, Holly K Tabor??, Karin M Dent?,
Chad D Huff?, Paul T Shannon®, Ethylin Wang Jabs”#, Deborah A Nickerson', Jay Shendure' &
Michael J Bamshad!:2?

We demonstrate the first successful application of exome sequencing to discover the gene for a rare mendelian disorder of
unknown cause, Miller syndrome (MIM?263750). For four affected individuals in three independent kindreds, we captured
and sequenced coding regions to a mean coverage of 40x and sufficient depth to call variants at ~97 % of each targeted exome.

Filtering against public SNP databases and eight HapMap exomes for genes with two previously unknown variants in each of the
four individuals identified a single candidate gene, DHODH, which encodes a key enzyme in the pyrimidine de novo biosynthesis

pathway. Sanger sequencing confirmed the presence of DHODH mutations in three additional families with Miller syndrome.

Exome sequencing of a small number of unrelated affected individuals is a powerful, efficient strategy for identifying the genes
ot B ki P N
-

REVIEWS
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Exome sequencing as a tool for
Mendelian disease gene discovery

Michael J. Bamshad**, Sarah B. Ng*, Abigail W. Bigham *$, Holly K. Tabor*!,

OPEN @ ACCESS Freely available online PLoS

Whole-Exome Re-Sequencing in a Family Quartet
Identifies POP7 Mutations As the Cause of a Novel
Skeletal Dysplasia

Evgeny A. Glazov'®*, Andreas Zankl>®, Marina Donskoi', Tony J. Kenna', Gethin P. Thomas', Graeme R.
Clark', Emma L. Duncan'?, Matthew A. Brown'*

1U

Next generation sequencing in a family with autosomal
recessive Kahrizi syndrome (OMIM 612713) reveals

a homozygo

Kimia Kahrizi', Cougar
Roxana Kariminejad’, R

Hossein Najmabadi' and Andreas Tzschach*?

Iniversity of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba, Australia, 2 Centre for Clinical Research, The University of Queensland,

Ewropean Journal of Human Genetics (2011) 19, 115-117 @
© 2011 Macmillan Publishers Limited All rights reseved 1018-4813/11

www.nature com/ejhg

us frameshift mutation in SRD5A3

Hao Hu?, Masoud GarshasbiZ, Seyedeh Sedigheh Abedini!, Shirin Ghadami',
einhard Ullmann?, Wei Chen?, H-Hilger Ropers?, Andreas W Kuss?,

Mutations As the

Mary J. Emond*, Deborah A. Nickerson* and Jay Shendure*

Abstract | Exome sequencing — the targeted sequencing of the subset of the human genome
that is protein coding — is a powerful and cost-effective new tool for dissecting the genetic
basis of diseases and traits that have proved to be intractable to conventional gene-discovery
strategies. Over the past 2 years, experimental and analytical approaches relating to
exome sequencing have established a rich framework for discovering the genes underlying
unsolved Mendelian disorders. Additionally, exome sequencing is being adapted to explore
the extent to which rare alleles explain the heritability of complex diseases and health-
related traits. These advances also set the stage for applying exome and whole-genome
sequencing to facilitate clinical diagnosis and personalized disease-risk profiling.

hich
Rs part of a large-scale, systematic effort to unravel the molecular causes of autosomal recessive mental retardation, we have  ikasid
previouslv deccrihad a navel ictine of mental i cataract and kvnhncic (Kahrizi cundrome k-
OMIM 6
array-bas
(c.203d
interval. /II Molecular Vision 2013; 19:2187-2195 <http://www.molvis.org/molvis/v19/2187> © 2013 Molecular Vision
essential = Received 21 May 2013 | Accepted 5 November 2013 | Published 7 November 2013
families
and eye
potential . . .
Eoroped Whole-exome sequencing identifies novel compound heterozygous
Keyword mutations in USH24 in Spanish patients with autosomal recessive
consangt

retinitis pigmentosa

Cristina Méndez-Vidal,'* Maria Gonzalez-del Pozo,'? Alicia Vela-Boza,® Javier yo-Lopez® Francisco J.
Loépez-Domingo,’ Carmen Viazquez-M.: hek,* J Dopazo,*** Salud Borrego,'? Guillermo Antiiiolo**

Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del
Rocio/CSIC/University of Seville, Seville, Spain; *Centro de I igacion Biomédica en Red de Enfe lades Raras (CIBERER),
Seville, Spain; *Medical Genome Project, G ics and Bioinfc ics Platform of Andalusia (GBPA), Seville, Spain;
“Department of Ophthalmology. University Hospital Virgen del Rocio, Seville, Spain; *Department of Bioinformatics, Centro

de Investigacion Principe Felipe, Valencia, Spain; *Functional Genomics Node (INB), Centro de Investigacion Principe Felipe,
Valencia, Spain




The principle: comparison of patients to
reference controls or segregation within families
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Pipeline of data analysis

Primary Secondary analysis Knowledge-based
processing (Heuristic filtering) prioritization
FASTQ file known disease genes

Filtering by effect _ o
Mapping Functional proximity

BAM file || Filtering by MAF o
Network proximity

Variant calling Filtering by family
VCF File || segregation Burden tests

Other prioritization
methods

Primary

: Gene prioritization
analysis



Heuristic Filtering approach

An example with 3-Methylglutaconic aciduria syndrome

F. Tort et al | Molecular Genefics and Me tabolism oo { 2013 ) xo0c—xx
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3-Methylglutaconic aciduria (3-
MGA-uria) is a heterogeneous
group of syndromes
characterized by an increased
excretion of 3-methylglutaconic
and 3-methylglutaric acids.

WES with a consecutive filter
approach is enough to detect
the new mutation in this case.

Contents lists available at SciVerse ScienceDirect .’
N ) st MetAbolism
Molecular Genetics and Metabolism S
journal homepage: www.elsevier.com/locate/ymgme e | R

Exome sequencing identifies a new mutation in SERACI in a patient with
3-methylglutaconic aciduria

Frederic Tort *®, Maria Teresa Garcia-Silva °, Xénia Ferrer-Cortés ?, Aleix Navarro-Sastre *°,

Judith Garcia-Villoria *®, Maria Josep Coll **, Enrique Vidal ¢, Jorge Jiménez-Almazan ¢, Joaquin Dopazo %=,

Paz Briones "¢, Orly Elpeleg ", Antonia Ribes *>*
tabolisme, Servei oquimica | Genétios Molecular, Hospital Clinic, IDIBAPS, 08028, Barcelona, Spain

itarias Servicio de Pediatria. Hospital 12 de Octubre, Madrid, Spain

pain
Felipe ((IPF), Valencia, Spain

long, Spain

* Monique and Jacques Roboh De f Gens tic Research, Hadassah, Hebrew University Medical Center, Jerusalem, Isroel




Lessons learned: the importance of local
variability in the prioritization process
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One of the most stringent filtering steps is the
exclusion of known population
polymorphisms. Public databases (1000
genomes, ESP, EXAC)
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It is well known that population is structured,
but, to what extent is this structure important
In the filtering process?



Lessons learned: the importance of local
variability in the prioritization process

OXFORD JOURNALS

¢

MOLECULAR BiIoLOGY AND EVOLUTION

Oxford Journals > Medicine & Health & Science & Mathematics > Molecular Biology and Evolution > Volume 33, Issue 5> Pp. 1205-1218.

267 Spanish Exomes Reveal Population-

=

Specific Differences in Disease-Related Genetic

Variation

Joaquin Dopazo'-‘-znz-", Alicia Arnadoz‘, Marta Bledax-z. Luz Garcla—Alonso'.
Alejandro Nenﬂn‘ -3, Francisco Garda~carda‘ +Juan AL Rodrignezs. Josephine T. Daubs,
Gerard Mun(anés. Antonio Ruedaz. Alicia Vela—l!ozaz. Francisco ). Lépez—Dorningoz.

Javier P. Florido®, Pablo Arce’, Macarena Ruiz-Ferrer
Todd E. Anlold’-s. Olivia Sp!elssg, Miguel Nvarez—Tejado‘ 0. Arcadi Navarro
» Salud Bonegos-7. Javier Santoyo—prez‘-z and

Shomi S. Bhattacharya»' *
Guillermo Antifiolo” %%

+ Author Affiliations

I *Corresponding author: E-mail: jdopazo@cipf.es; gantinolo@us.es.

Abstract

The filtering
efficiency of the local
population can be
between 5 and 10
times those of a
general database,
such as the 1000
genomes
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ciberernCiiZ
The CSVS is a crowdsourcing project

Scenario: Sequencing projects of healthy
population are expensive and funding
bodies are reluctant to fund them

CSVS Aim: To offer increasingly accurate
information on variant frequencies

Csits characteristic of Spanish population.
S b CSVS Main use: Frequency-based
Overview filtering of candidate variants
S T Main data source: Sequencing projects
of individual researchers (CIBERER and
others)

Problem: Most of the contributions
correspond to patient exomes
Idea: Patients of disease A can be

http://ciberer.es/bier/exome-server/ considered healthy pseudo-controls for
disease B (providing no common genetic

A widely used tool containing background exist between A and B)
over 800 exomes and >2000 Beacon: CSVS will soon appear in the
in September Beacon server

CSVS: created by Computational Genomics Department
Principe Fekge Research Canter
2015




Genomic initiatives

RareGenomics

http://rare—genomics.com/
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Personalized Medicine Model
without universal eHR
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Each study requires of a
specific genomic and
clinical data collection into
an external database

Static clinical data (e.g. if a
control becomes a case the
external DB will not be
updated)

Limited genomic data reuse
for purposes different from
the original study

Model of GEL (100,000
genomes) Catalonian
Genomic initiative, etc.



Advantages of a model that integrates
genomic data and universal eHR

* The whole health system
becomes a humongous
potential prospective
study

* Clinical data dynamically
associated to patients

e Possibility of many clinical
studies by reanalyzing
genomic data under
diverse perspectives (with
no extra investment)

* Growing genomic DB with
increasing study
possibilities




The (relative) success in rare
diseases has not been reproduced
In complex diseases

How to explain missing heritability?
Rare Variants, rare CNVs, epigenetics?

The case of the missing heritability
‘When scientists opened up the human genome, they expected to find the genetic components of
e e seel ine: ighton

Table 1| Estimates of heritability and number of loci for several complex traits

Disease Mumber of lod Proportion of heritability explained
Age-related macular degeneration’™ 5 50%

Crohn's disease 32 20%

Systemic lupus erythematosus’™ & 15%

Type 2 diabetes™ 18 6%

HDL cholesteral ™ 7 5.2%

Height™ 40 5%

Early onset myocardial infarction™ 0 2.B%

Fasting glucose™ 4 1.5%

* Residual is after ad justment for age gender, diabetes.



Is the heritability missing or are we
ooking at the wrong place?

Table 1 | Estimates of heritability and number of loci for several complex traits

How to explain

missing heritability?

Rare Variants, rare
CNVs, epigenetics

or.. epistatic effects?

The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of
common traits and diseases. But they were nowhere to be seen. Brendan Maher shines alighton
six places where the missing loot could be stashed away.

Drisease Mumber of |od Proportion of heritability explained
Age-related macular degeneration’™ 5 50%
Crohn's disease™ 32 20%
Systemic lupus erythematosus™ & 15%
ype 2 diabetes™ 18 6%
LIl s L | [ &= =7
Height* 40 ( 5% )
Early ensel myacardial infaretion’ 9

Fasting glucose™”

4

1.5%

* Residual is after adjustment for age gender, diabetes.

—

EATURE PERSONAL GENOMES

2010 Nature America, Inc. All rights reserved.
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Common SNPs explain a large pybportion of the heritability

for human height

Jian Yang', Beben Benyamin', Brian P McEvoy’, Scott
Pamela A Madden?, Andrew C Heath?, Nicholas G M
Peter M Visscher!

SNPs discovered by genome-wide association studies (G, Ss)
account for only a small fraction of the genetic variatiglfof
complex traits in human populations. Where is the rejining

eritability¢ We estimated the proportion of var| or
human height explained by 294,831 SNPs genot
3,925 unrelated individuals using a linear el sis, gnd

validated the estimation method with sigfulatiof{based ol
the observed genotype data. We show that 45% of variand]

an be explained by considering all SNI§ simultagleously. Jhus,
most ot the heritability is not missing bui previously
been detected because the individual effects are too small
to pass stringent significance tests. We provide evidence
that the remaining heritability is due to incomplete linkage
disequilibrium between causal variants and genotyped SNPs,
exacerbated by causal variants having lower minor allele
frequency than the SNPs explored to date.

GWASs in human populations have discovered hundreds of SNPs

don’, Anjali K Henders!, Dale R Nyholt!,

in', Grant W Montgomery', Michael E Goddard? &

of variation that their effects do not reach stringent significance
thresholds and/or the causal variants are n complete linkag

wn AL .the end ‘most

minor allele frequen ypec t
these two | 3 1t f 1

L of th e eritab ty
, but these do not L).Plnm

Hughl a classic wtitative trait, ea
and studied fo 4 m ul g
genetic basi Wa Sm the re
estimated to be muta
short or tall stature have been found
much of the variation in the general population. Recent GWASs on
tens of thousands of individuals have detected ~50 variants that are
associated with height in the population, but these in total account
for only ~5% of phenotypic variance'®-1?

Data from a GWAS that are collected to detect statistical associations
between SNPs and complex traits are usually analyzed by testing each




Human genetic diseases have a

modular nature

With the development of systems biology, studies have shown that
phenotypically similar diseases are often caused by functionally related
genes, being referred to as the modular nature of human genetic

diseases (Oti and Brunner, 2007; Oti et al, 2008).

This modularity suggests that causative genes for the same or
phenotypically similar diseases may generally reside in the same

biological module, either a protein complex (Lage et al, 2007), a sub-
network of protein interactions (Lim et al, 2006) , or a pathway (Wood et
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Same disease
in different
populations is
caused by
different
genes
affecting the
same

Fernandez, 2013, Orphanet J Rare Dis. fyunctions



The modular nature of human diseases

Controls Cases

Affected cases in complex diseases will be a heterogeneous population with
different mutations (or combinations).

Many cases and controls are needed to obtain significant associations.

The only common element is the (know or unknown) module affected.

Disease understood as the failure of a functional module



Two problems: defining
functional modules and
modeling their behavior

Gene ontology: Models
descriptive;
unstructured Enrichment methods. GO, etc. (simple

functional labels statistical tests)



From gene-based to
function-based perspective
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Gene Ontology are labels to genes that describe, by means of a controlled
vocabulary (ontology), the functional role(s) played by the genes in the cell.
A set of genes sharing a GO annotation can be considered a functional module.



An example of GWAS

GWAS in Breast Cancer.
The CGEMS initiative. (Hunter et al. Nat Genet 2007)
1145 cases 1142 controls. Affy 500K

Conventional association test reports only 4 SNPs
significantly mapping only on one gene: FGFR2

Conclusions: conventional SNP-based or
gene-based tests are not providing much
resolution.



The same GWAS data re-analyzed

using a function-based test
Breast Cancer

CGEMS initiative.

collagen metabolic process
exocytosis [ NG
regulation of Rho protein signal transduction [N (H u nter et aI . Nat
phosphate transport [N
Genet 2007)

glycoprotein biosynthetic process [|1NNNNE
protein aming acid glycosylation [ T NNEGENGEE
glycoprotein metabolic process [N
Rho protein signal transduction [ NNNRNRRMMMEER 1 1 4 5 1 1 42
regulation of small CTPase mediated signal transducti... [ NNRNRNRNRNMMEEER Ca Ses
transmembrane receptor protein tyrosine kinase sign... | NN t I Aff 5 O O K
regulation of Ras protein signal transduction [ NN CO n ro S . y
enzyme linked receptor protein signaling pathway [ NNEEEEEE
synaptic transmission | NN
regulation of signal transduction [T NEGNGTNEE . Only 4 SNPS Were
potassium ion transport I significantly associated,
cell motilivy | INEG—————— . .
mapping only in one gene:

monevalent inorganic cation transport |1 NN
small CTPase mediated signal transduction [ N FG FRZ

0 20 40 60 E0 100

GESBAP GO

PBA reveals 19 GO categories including regulation of

signal transduction (FDR-adjusted p-value=4.45x10-93)
in which FGFR2 is included.

Bonifaci et al., BMC Medical Genomics 2008; Medina et al., 2009 NAR



GO processes AR
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From gene-based to
function-based perspective

SNPs,
Gene expression

Gene;

Gene, G
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Detectlon Low (only very high
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Annotations many many
available
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Two problems: defining
functional modules and
modeling their behavior

Models

Connectivity models. Protein-protein, protein-
Interactome: DNA and protein-small molecule interactions
relationships among (tests on network properties)

components but
unknown function




From gene-based to
function-based perspective
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Network analysis helps to find
disease genes in complex diseases

Four new loci associations discovered by pathway-based and network
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From gene-based to
function-based perspective
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*Need of extra information (e.g. GO) to provide functional insights in the findings
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Two problems: defining
functional modules and
modeling their behavior

Models

Empirical models. Models of signalling
pathways, metabolic pathways, regulatory

Pathways: pathways, etc. (executable models)

Mathematical models. Kinetic models including
stoichiometry, balancing reactions, etc.
(mathematical models)

components and
their functional roles




Where the cell activity maps
come from?
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How realistic are models of
pathway activity?

RESEARCH ARTICLE

CANCER

Signaling pathway models as biomarkers:
Patient-specific simulations of JNK activity predict
the survival of neuroblastoma patients

Dirk Fey,' Melinda Halasz,' Daniel Dreidax,? Sean P. Kennedy,' Jordan F. Hastings,’
Nora Rauch,” Amaya Garcia Munoz," Ruth Pilkington,” Matthias Fischer,™*°
Frank Westermann,? Walter Kolch,'”® Boris N. Kholodenko,"”-®* David R. Croucher'3°*

Signaling pathways control cell fate decisions that ultimately determine the behavior of cancer cells.
Therefore, the dynamics of pathway activity may contain prognostically relevant information different from
that contained in the static nature of other types of biomarkers. To investigate this hypothesis, we char-
acterized the network that regulated stress signaling by the c-Jun N-terminal kinase (JNK) pathway in
neuroblastoma cells. We generated an experimentally calibrated and validated computational model of
this network and used the model to extract prognostic information from neuroblastoma patient—specific
simulations of JNK activation. Switch-like JNK activation mediates cell death by apoptosis. An inability to
initiate switch-like JNK activation in the simulations was significantly associated with poor overall survival
for patients with neuroblastoma with or without MYCN amplification, indicating that patient-specific simu-
lations of JNK activation could stratify patients. Furthermore, our analysis demonstrated that extracting
information about a signaling pathway to develop a prognostically useful model requires understanding of
not only components and disease-associated changes in the abundance or activity of the components but
also how those changes affect pathway dynamics.
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Inability of JNK activation (that mediates
apoptosis) is associated to bad prognostic,
irrespective of MYCN amplification status
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Fig. 1. Using network descriptors of signaling pathway activation potential to predict patient response. After construction of a com-
systems g.1. Using gnaling pathway

putational model based on the validated network topology and that reproduces the signaling pathway dynamics, the model can be used
to identify network descriptors, such as the Hill coefficient, that are calculated from the dynamic simulation of the activation of a signaling
pathway. These in silico biomarkers cannot be directly measured.
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The real transition to precision medicine

personalization

Decisions and
actions based
on knowledge

Intuitive Medicine Empirical Medicine Precision Medicine

Tomorrow
——

The use of new algorithms that enable the transformation of genomic
measurements into cell functionality measurements that account for
disease mechanisms _and for drug mechanisms of action will ultimately
allow the real transition from today’s empirical medicine to precision
medicine and provide an increasingly personalized medicine




