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In year 2000, we initiated the CAMDA conference because of the explosion of 
microarray data (Nature 411: 885, 2001). Now, we have seen an even bigger challenge 
with the rapid adoption of Next Generation Sequencing (NGS) in biomedical research.  
Accordingly, a couple of thought leaders including Joaquin Dopazo, David Kreil, and 
Simon Lin in the 2008 conference suggested changing the CAMDA focus from 
‘microarray data’ to ‘massive data’. As such, CAMDA resulted in a brand-new name of 
“Critical Assessment of Massive Data Analysis” in 2009. 
 
For the first time in the history of biology, the massive amount of data is quickly 
outpacing Moore’s Law. 
  

“The cost of analyzing the large data sets already exceeds the cost of generating 
them.” – Editorial, Nature Methods, 6:623, 2009 

 
The goal of CAMDA is to solve this grand challenge by crowdsourcing. We rely on the 
collective intelligence of the community to find viable solutions. To make it fun, we have 
twisted this approach with a competition. Ever year, a common data set is released to the 
contestants and a best presentation at CAMDA is awarded. We also compile the solutions 
from each year into a monograph for the distribution of knowledge. Presentations from 
this year will appear in the open journal of PLOS One as a special issue after peer review.   
 
We hope you all enjoy this exciting meeting and the wonderful autumn in Chicago!  
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Human Genome Annotation 

Keynote Speaker: Mark Gerstein, Yale University 
 

Abstract 

A central problem for 21st century science will be the annotation and understanding of 
the human genome.  My talk will be concerned with topics within this area, in particular 
annotating pseudogenes (protein fossils), binding sites, CNVs, and novel transcribed 
regions in the genome. Much of this work has been carried out in the framework of the 
ENCODE and modENCODE projects. 
 
In particular, I will discuss how we identify regulatory regions and novel, non-genic 
transcribed regions in the genome based on processing of tiling array and next-generation 
sequencing experiments.  I will further discuss how we cluster together groups of binding 
sites and novel transcribed regions. 
 
Next, I will discuss a comprehensive pseudogene identification pipeline and storage 
database we have built. This has enabled us to identify >10K pseudogenes in the human 
and mouse genomes and analyze their distribution with respect to age, protein family, and 
chromosomal location. I will try to inter-relate our studies on pseudogenes with those on 
transcribed regions. At the end I will bring these together, trying to assess the 
transcriptional activity of pseudogenes. 
 
Throughout I will try to introduce some of the computational algorithms and approaches 
that are required for genome annotation -- e.g., the construction of annotation pipelines, 
developing algorithms for optimal tiling, and refining approaches for scoring 
microarrays. 
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Computational Challenges in the Analysis of Short Read DNA 

Sequences 

Keynote Speaker: Martin Morgan, Fred Hutchinson Cancer Research Center 
 

Abstract 

Short read DNA sequence data poses significant challenges for computational analysis. 
Here we survey and assess these challenges, providing creative solutions and possible 
directions for development. It is useful to distinguish between large-scale public data 
such as the TCGA, 1000 genomes and ENCODE projects, and data generated with more 
modest resources. The size of primary data is a major computational hurdle. However, 
many analyses are most interesting after data has been reduced (e.g., by alignment to 
reference sequences) to manageable size. The computational challenges then involve 
formulation and design of appropriate statistical questions, domain-specific (e.g., ChIP-
seq) analyses, integrative approaches that combine sequence and other data sources, and 
sequence-based annotation. These themes are illustrated with reference to several 
examples from our group. 
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PeakRegressor identifies composite sequence

motifs responsible for STAT1 binding sites and

their potential rSNPs

Jean-François Pessiot1, Hirokazu Chiba1, Hiroto Hyakkoku2,1,

Takeaki Taniguchi3, Wataru Fujibuchi1∗

1Computational Biology Research Center, Advanced Industrial Science and Technology (AIST),

2Waseda University, 3Mitsubishi Research Institute, Inc.

Abstract

How to identify true transcription factor binding sites on the basis
of sequence motif information (e.g., motif pattern, location, combination,
etc.) is an important question in bioinformatics. We present “PeakRegres-
sor”, a system that identifies binding motifs by combining DNA-sequence
data and ChIP-Seq data. PeakRegressor uses L1-norm log linear re-
gression in order to predict peak values from binding motif candidates.
Our approach successfully predicts the peak values of STAT1 and Pol II
with correlation coefficients as high as 0.65 and 0.66, respectively. Using
PeakRegressor, we are able to identify composite motifs for STAT1, as
well as potential regulatory SNPs (rSNPs) involved in the regulation of
transcription levels of neighboring genes.

1 Introduction

The experimental identification of cis-regulatory sites based on transcrip-
tion factor binding motifs (TFBMs) is a difficult and time-consuming task.
In this regard, in silico analysis of TFBMs has recently attracted atten-
tion as a promising tool for discovering true cis-regulatory sites. Previous
works attempt to find TFBMs to model the mechanisms underlying the
control of gene expression levels[2, 4]. They assume that the gene expres-
sion levels are determined by the presence of certain motifs in the upstream
regions of the genes. Based on this assumption, they find TFBM candi-
dates which show a strong correlation with changes in the gene expression
levels.[5] Instead of modeling the expression levels, another solution is to
model the binding affinities between a protein and its target genes based
on the thermodynamics theory. However, the binding affinities are diffi-
cult to measure and related works use transcription factor occupancy to

∗Corresponding Author - w.fujibuchi@aist.go.jp

1
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approximate binding affinity[6, 7].

In this article, we present PeakRegressor, a new tool for the identifi-
cation of functional TFBMs from ChIP-Seq data. As far as we know, this
is the first attempt to perform peak signal regression based on candidate
motif models. Our contribution is twofold. First, in contrast with previ-
ous approaches, we use the peak scores (provided by[9]) as a surrogate for
the binding affinities. We argue that they provide more accurate approx-
imations and therefore lead to better identification of functional TFBMs.
Second, our approach identifies not only primary TFBM candidates but
also secondary motifs that may often synergistically strengthen or weaken
the binding. The rest of this paper is organized as follows. We describe
PeakRegressor in section 2. In section 3, we illustrate the performance of
our approach on two ChIP-Seq datasets and discuss its ability to identify
the binding motifs of STAT1 and Pol II.

2 PeakRegressor System to Find Func-

tional TFBMs

PeakRegressor is a system to find TFBMs that are statistically important
for transcription factor binding signals, by taking ChIP-Seq data as input,
and outputs a list of TFBM candidates. The workflow is summarized in
Figure 1.

Step 1 First, we define the peak sequences as the 200-bp genomic re-
gions centered around the peaks. Then, we sort the peak sequences accord-
ing to their ascending scores. We group the peak sequences into clusters
such that each cluster contains 200 peaks of consecutive scores. Then, we
apply MEME1 to each peak sequence cluster. For each sequence cluster,
MEME is parameterized in ZOOPS mode to find 10 motifs of lengths
8 −−20.

This strategy has two advantages. First, it allows us to identify motifs
that may be associated with a given binding affinity level. If a cluster
contains only low (resp. high) binding affinity peaks, the corresponding
sequences may contain weak (resp. strong) binding motifs, i.e., motifs
that are specific to low (resp. high) binding affinity. Second, it reduces
computational time by parallelizing MEME computations.

Step 2 In order to predict the binding affinity of the peaks, we need
to represent each peak as a vector in the motif space. Let seqi be the
DNA sequence of peak i. Let seqi

j,ℓ be the ℓ-length sub-sequence of seqi,

starting from position j. Let Sd be the PSSM of motif d. Let ℓi be the
length of seqi and ℓd be the length of motif d. We represent peak i as

1http://meme.sdsc.edu/
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Figure 1: Schematic view of the workflow of PeakRegressor. PeakRegressor takes
ChIP-Seq data as input and outputs a list of TFBM candidates and their weights that give
the best regression accuracies.

vector xi ∈ RD, such that

xid = max
j=1...ℓi−ℓd+1

f(seqi
j,ℓd

, S
d) − max(Sd)

for d = 1 . . . D. The quantity f(seqi
j,ℓd

, Sd) is a sum of log-odd scores,

representing how well motif d matches sub-sequence seqi
j,ℓd

. Hence, the
first term of the sum, xid, corresponds to the best match when we slide
motif d along sequence seqi. The term max(Sd) is the maximum score
achievable by any sequence matching with the motif d. Therefore we
always have xid ≤ 0, with xid = 0 for the best possible match.

Step 3 Quantities yi to be fitted are the log values of the peak en-
richment scores, as given by PeakSeq[9]. We can now solve the regression
problem defined by (xi, yi) pairs for i = 1 . . . N . Linear regression is a sim-
ple and popular approach, but is prone to overfitting. Hence, we choose
to regularize the model with L1-norm, i.e., we want to minimize the sum
of squared errors and the L1-norm of the regression coefficient vector:

3
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min
b∈RD

β‖b‖ +
N

X

i=1

(bT
xi − yi)

2
,

where β > 0 is a user-defined regularization coefficient. The L1-norm
regression is able to select a small number of features that best explain
the fitted quantity[10]. In our case, the features correspond to DNA motifs
and hence, the result of this step is a set of motifs that best explain the
binding signal values from ChIP-Seq dataset. We use Lasso, a popular
algorithm for solving L1-norm regression. Lasso is available as part of the
LARS package for R2.

3 Results and Discussion

3.1 Input datasets

We use the ChIP-Seq data provided by[9]. For STAT1, we use 200-bp
windows around the peak centers to define the peak sequences. For Pol
II, the peak centers are not available and thus, we use the peak start and
peak end coordinates to define the peaks. When the length of the result-
ing sequence is less than 200 bp, we enlarge it in both directions in order
to reach 200 bp length. When the length is more than 4000 bp, we trim
it in both directions in order to reach 4000 bp length. As a result, all the
Pol II peak sequence lengths lie between 200 and 4000 bp.

For the regression analysis, we have to set the regularization parame-
ter β. First, we define β = 2i for i ∈ [−25, 25]. Then for each value of β,
we perform a 30 folds cross-validation. In each fold, we split the dataset
into a training set and a test set, with a 90% − 10% ratio. The optimal
value for β is the one which corresponds to the lowest prediction error
on the test set. All the following results are averaged over the 30 folds
cross-validation.

3.2 L1-norm log linear regression

We considered three settings before applying PeakRegressor. In the first
setting, we considered all the peaks for regression. In the second setting,
we excluded the peaks which showed no overlap with a promoter region
(as defined by UCSC dataset3). In the third setting, we excluded the
peaks which showed high Q-values ( > 10−3), as provided by [9]. Table 1
shows the averaged correlation coefficients between peak values and their
predicted values in the test dataset. We can see that filtering peaks with
their Q-values enhances the correlation coefficient for both STAT1 and
Pol II. However, when filtering with promoter proximity, we observe than
the correlation coefficient improves for Pol II but decreases for STAT1.

In Figure 2, we plot the STAT1 peak scores with two filtering methods
such as Q-value < 10−3 and promoter proximity in the test dataset against

2http://www-stat.stanford.edu/ hastie/Papers/LARS/
3http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/upstream1000.fa.gz

4

CAMDA 2009, Chicago, IL, Oct 5-6, 20009 7



Filtering method #Peaks (STAT1/Pol II) STAT1 Pol II

None 36, 998 / 24, 739 0.50 0.44

Promoter proximity 3, 907 / 9, 094 0.41 0.53

Q-value < 10−3 16, 639 / 17, 580 0.65 0.66

Table 1: Influence of the peak filtering methods on the correlation coefficients between peak
values and their predicted values in the test dataset. The correlation coefficients are averaged
in 30-fold cross-validation.

their predictions by PeakRegressor. The correlation coefficient is as high
as 0.65 between the peak and predicted values for the Q-value filtering,
whilst it is as low as 0.41 for promoter proximity filtering. Interestingly,
however, the data points that are selected by promoter proximity exist
only in a biased region, leading to worse prediction.
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Figure 2: The STAT1 regression results in test data with two filtering methods
(shown by circle): promoter proximity (left) and Q-value (right). The correlation
coefficients between peak values and their predicted values are 0.45 and 0.65 for promoter
proximity and Q-value filtering, respectively.

In Tables 2 and 3, we show the top 10 motifs for STAT1 and Pol
II identified by PeakRegressor, respectively. The motifs are sorted ac-
cording to the absolute values of their averaged regression coefficients.
A motif with a positive (resp. negative) coefficient is thought to have
a strengthening (resp. weakening) effect on the binding. In the case of
STAT1, it is clear that our approach correctly identifies the classical GAS
motif TTC[TC]N[GA]GAA as the main binding pattern[8]. Meanwhile,
the Pol II binding motifs also contain Downstream Promoter Element
[AG]G[AT][CT][GAC] and Initiator Site [TC][TC]AN[TA][TC][TC][3].

As the most important feature of PeakRegressor, it can give us a list of

5
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STAT1 Normalized coef.

CA[TC]GTGACT[TG]C 1.

[TG]G[GTA][GC][AG]TTT[CA]C[AGC][GA]GAA[AC][TG]G[GA][GC] 0.96

TTC[CT][TG][GA]GAAAT[GC][CA][CA][CAT][AT][TCG][CG][CT] 0.72

[CT][TC]CA[GT]TTCCAGGAA[AT]T[CG][CAT]C[CT] 0.65

GGAGGGCG -0.57

GGACGCCG -0.56

A[CT]TTC[TC][TG]GGAA 0.56

TT[CA]C[TAG][GA]GAA[GA]T 0.55

A[TA]TTCC[CT][GA]GAA[AC]T[CG][AC] 0.48

TT[CA][TC][GA]GGAA[AG] 0.47

Table 2: List of putative STAT1 binding motifs. The classical GAS motifs are shown in
boldface.

Pol II Normalized coef.

T[AG]A[GC][TAG]CA[GCT]A[AC]AA 1.

A[GA]AA[AC][CA]AA[AC]AAA 0.78

C[ACT][GT][CG][CT][TA]CC[AGT]CC[TA] 0.76

C[CT][CG][AT]GGCTGG[AG]G 0.68

TTTCTGC[CT][CT]TT[GT] 0.67

T[TA]T[TC][CA]CAGACT[AT] 0.63

GGAGGGAGGC[AG]G 0.62

AC[AC][CA][AC][AT][AG]AGAAA 0.61

TTTGT[CT][TA]T[TG][AC][AT]T 0.54

AAA[AT][GC]AAA[AT]A[GA]A 0.54

Table 3: List of putative Pol II binding motifs. The Downstream Promoter Element and
Initiator site motifs are shown in boldface.

6
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putative composite motifs. Basically, it is difficult to evaluate whether a
composite motif consists of the same motif or multiple (different) motifs.
In order to identify the composite motifs, we proceed as follows. First,
we consider the best set of motifs according to PeakRegressor (i.e. the
set which corresponds to the best prediction accuracy). Among these,
we select 136 motifs which have a normalized coefficient higher than 0.1.
We use these motifs to represent each peak sequence as a binary vector,
indicating whether a motif is present or not in the peak sequence. Then
we cluster the resulting peak vectors using the K-means algorithm. Thus
each cluster contains peak vectors which show similar motif patterns, i.e.
sequences containing potential composite motifs.

Here we show an example of a composite motif that is responsible for
STAT1 binding signals:

TCACA[TG]G[ACG] + [TC]TT[CA]C[CA][AG][GC][AC]A.

3.3 Candidate motifs and their potential rSNPs

Single or composite motifs found in the PeakRegressor system may reflect
actual transcription factor binding sites. If a single nucleotide polymor-
phism (SNP) occurs within the sites, regulatory control of nighboring gene
transcription will be perturbed, thus leading to genetic diseases in some
cases[1]. Therefore, true binding sites may have SNPs less frequently than
the non-binding sites. As an important verification, we check the num-
ber of known SNPs to be found within the STAT1 positions presented
by PeakRegressor by using dbSNP database4. We find that 0.39% (138
for 35,156 bp) of mapped positions with 7 GAS-like motifs in Table 2
on the whole genome contains SNPs, while as much as 0.54% (18,097
for 3,344,439 bp) of all positions contains SNPs on the whole genome se-
quences. The statistical difference between the above two ratios (0.39 %
vs. 0.54 %) is highly significant such as p < 7.8 × 10−5 by Fisher’s ex-
act test. These sites are possible candidates of rSNPs because the slight
change within the motif may affect the change of gene expression level
and might cause diseases.
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Sündüz Keleş
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A Statistical Framework for the Analysis of ChIP-Seq Data

Pei Fen Kuan, Guangjin Pan, James A. Thomson, Ron Stewart and Sündüz Keleş

1 Introduction

Studying protein-DNA interactions is central to understanding gene regulation in molecular biology. Sig-
nificant progress has been made in profiling transcription factor binding sites and histone modifications
using chromatin immunoprecipitation (ChIP) techniques with high throughput microarrays (Buck and
Lieb, 2004; Cawley et al., 2004). More recently, a new technology has been developed to directly sequence
ChIP samples (ChIP-Seq) and offers whole-genome coverage at a lower cost. Most of the published work
in ChIP-Seq are conducted via the Solexa/Illumina platform (Mikkelsen et al., 2007; Barski et al., 2007;
Johnson et al., 2007). This high-throughput sequencing technology works by sequencing one/both ends of
each fragment (∼ 25− 70 bps) in the ChIP sample and generates millions of short reads/tags. These tags
are then mapped to reference genome, followed by summarizing the total tag counts in each small genomic
bin and analysis to detect enriched regions. Since then, a number of algorithms have been developed to
detect enriched regions in ChIP-Seq data (Zhang et al., 2008a; Ji et al., 2008; Rozowsky et al., 2009).
Enriched regions are detected with either a one sample analysis of the sequenced ChIP DNA sample or
a two sample analysis by comparing sequenced ChIP sample to reference genomic control (Input DNA)
sample. Although the sequencing-based technology offers promising results for surveying large genomes
at higher resolutions, it is not free of sequencing and other source of biases (Dohm et al., 2008; Vega
et al., 2009; Rozowsky et al., 2009). Despite this, most of the existing tools do not consider such biases.
Furthermore, two recent publications (Teytelman et al., 2009; Auerbach et al., 2009) observed that high
throughput sequencing of Input DNA reveals open chromatin regions and regions of other biological inter-
est and challenged the use of Input control for detecting enriched regions. This motivates revisiting the
one sample and two sample analysis.

In this paper, we study sources of bias in the underlying data generating process of ChIP-Seq tech-
nology by utilizing sequenced Naked DNA (non-cross-linked, deproteinized DNA) and develop a model
that captures the background signal in the ChIP-Seq data. We then propose mixture models for both
one and two sample analyses of ChIP-Seq data and apply these to analyze STAT1 dataset. Our modeling
framework incorporates the variability in both the mappability and GC-content of regions on the genome
and sequencing depths of the samples. We show that our model fits very well on real data and provides a
fast model-based approach for ChIP-Seq data analysis.

2 A non-homogeneous zero inflated negative binomial regression model
for the background distribution

Standard pre-processing and analysis of ChIP-Seq data involve retaining only tags that align uniquely to
the genome. This induces apparent bias in the subset of tags used for the analysis. This factor is usually
ignored in modeling the background/non-enriched distribution generating ChIP-Seq data. The mappability
bias is apparent as illustrated in Figure 1 of Rozowsky et al. (2009). These authors provided an efficient code
to score the number of uniquely mappable nucleotides within a genomic window (mappability score) and
introduced the PeakSeq algorithm for analyzing ChIP-Seq data. To the best of our knowledge, PeakSeq
is the only software that incorporates mappability bias, albeit in an ad hoc manner, by performing a
local permutation in a pre-specified genomic window. Within each genomic window, all the nucleotides
are assumed to have the same mappability score. However, the size of the genomic window needs to be
calibrated in this local permutation scheme. A small genomic window would result in insufficient tags for

2
CAMDA 2009, Chicago, IL, Oct 5-6, 20009 13



permutation, while a large genomic window would downplay the effect of mappability bias and decrease
the resolution.

In addition to mappability bias, the observed tag counts have been shown to be correlated with GC
content (Dohm et al., 2008). In particular, regions with higher GC content exhibit increasing number of
tags (Dohm et al., 2008). Since both the mappability and GC bias are characteristics of underlying genomic
DNA sequence, observed tag counts from naked DNA (non-cross-linked, deproteinized) sample provides a
natural platform to study such biases. We utilized naked DNA high-throughput sequencing data of HeLa
S3 cells from Gene Expression Omnibus under accession number GSE14022 and the naked DNA sample
from human embryonic stem (hESCs) cells from the Thomson Lab, UW-Madison, for developing a model
of observed tag counts that captures the mappability and GC bias.

Let Yj denote the total number of overlapping extended tag counts in bin j and Mj be the average
mappability score, where 0 ≤ Mj ≤ 1. Let GCj denote the average GC content in bin j which is calculated
in a similar manner as Mj to account for tag extensions. In Figure 1, we plot the average bin level tag
counts against Mj and GCj for both the HeLa S3 and hESCs naked DNA samples. This plot indicates
that the tag counts are increasing in both Mj and GCj . This provides evidence for mappability and GC
biases in the observed tag counts of the sequenced naked DNA sample.
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Figure 1: Mappability and GC bias in sequenced naked DNA samples. Top row plots mean tag counts
against the mappability score Mj . Bottom row plots mean tag counts against the GC content GCj .

Since bins with zero mappability are never sequenced, this gives rise to excess zeroes in the observed
data. We introduce a Bernoulli random variable Bj that takes value 1 if bin j is sequenced. Consider the
following general formulation for modeling the background (non-enriched) distribution:

Yj |µj ∼ NjI(Bj = 1),
Bj |pj ∼ Ber(pj),

pj ∼ Beta(Mj , v),
Nj |µj ∼ g(µj),

where Nj measures tag counts arising from non-specific sequencing biases. We choose a beta-binomial
family for Bj instead of the more common logit link function so that P (Bj = 0|Mj = 0) = 1, i.e., a bin is
never sequenced if it has zero mappability score which is consistent with the pre-processing step that only
retains uniquely aligned tags.

To ascertain if inclusion of Mj and GCj improves the model fit, we first ignore the Bernoulli indicator
for simplicity and consider fitting a generalized linear model with Poisson family, i.e., Yj ∼ Po(µj) for (1)
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µj = exp(β0) (None), (2) µj = exp(β0 + β1Mj) (Mj only), (3) µj = exp(β0 + β1GCj) (GCj only), (4)
µj = exp(β0 + β1Mj + β2GCj) (Mj and GCj). We compare the different µj formulations based on BIC
scores. In Table 1, the BIC scores for the model which includes both Mj and GCj are the lowest for both
naked DNA sample. Therefore, we choose µj = exp(β0 + β1Mj + β2GCj).

BIC None Mj only GCj only Mj and GCj

HeLa S3 nakedDNA 5694641 5069068 5365597 5046438
hESCs nakedDNA 9454619 7674979 8539502 7598011

Table 1: Model selection based on BIC scores. Each cell reports the BIC score under different µj formu-
lations.

Next we consider two candidate models for Nj ∼ g(µj): (1) g(µj) ∼ Po(µj) and (2) g(µj) ∼
NegBin(a, a/µj). This gives rise to a zero-inflated Poisson regression (ZIPreg) under (1) and a zero-
inflated Negative Binomial regression (ZINBreg) under (2). Figure 2 compares simulated data from the
fitted ZIPreg and ZINBreg against the actual data for both HeLa S3 and hESCs naked DNA samples. In
both samples, ZIPreg is unable to capture high tag counts as shown by the lighter tail compared to the
distribution of the actual data. On the other hand, ZINBreg provides a better fit to the actual data and
is able to trace the over-dispersion in the distribution of the actual data as displayed in Figure 2.
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Figure 2: Goodness of fit for naked DNA samples. Each panel compares the simulated data against the
actual data.

3 One sample problem

Observed counts in ChIP-Seq data can be considered as coming from two populations of genomic regions,
namely, protein bound and unbound regions. Exploratory analysis in Section 2 motivates a background
model for tags from unbound regions. Next we outline this model and also propose a model for enriched
tag counts. Let Yj denote the observed tag counts for bin j, and Zj be the unobserved random variable
specifying if bin j comes from enriched (Zj = 1) or non-enriched (Zj = 0) distribution. We define
Yj ∼ NjI(Bj = 1) given Zj = 0. Here Nj ∼ NegBin(a, a/µj) measures non-specific sequencing which is
related to both Mj and GCj , while Bj indicates if bin j is sequenced and it depends on Mj which gives
rise to a ZINBreg, as described in Section 2.

We let Yj = Nj+Sj where Sj represent the true signal due to enrichment, and model Sj ∼ NegBin(b, c).
Therefore, the observed tag counts can be written as a mixture model P (Yj = y) = π0P (Yj = y|Zj =
0)+(1−π0)P (Yj = y|Zj = 1), where π0 = P (Zj = 0), Yj = y|Zj = 0 ∼ZINB and Yj = y|Zj = 1 ∼ Nj +Sj .
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Although there is no closed form for Yj |Zj = 1 (convolution of two negative binomial distributions), we
have an efficient and robust procedure for estimating all the unknown parameters (v, β0, β1, β2, a, b, c, π0)
in the model. To identify a set of bins which are enriched while controlling false discovery rate (FDR) at
level α, we use a direct posterior probability approach of Newton et al. (2004).

We illustrate our proposed model on the ChIP-Seq data measuring STAT1 binding in interferon-γ-
stimulated HeLa S3 cells from Rozowsky et al. (2009) for Chromosome 13 and 21. Figure 3 compares the
simulated data from the mixture model (red lines) against the actual STAT1 data for Chromosome 13 and
21, respectively. As evident in this figure, our proposed mixture model provides a good fit to the actual
data. These model based fits are comparable to simulation based approach for ChIP-Seq data studied in
Zhang et al. (2008b).
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Figure 3: Goodness of fit for STAT1 ChIP-Seq sample. Red lines correspond to simulated data from
the mixture model. Blue lines correspond to simulated data from the ZINBreg null model of no enrich-
ment. Green lines correspond to simulated data from negative binomial (Ji et al., 2008) null model of no
enrichment.

At FDR of 0.05, we identify 1328 and 776 enriched regions for Chromosome 13 and 21, respectively,
based on one sample analysis. As in Rozowsky et al. (2009), we compare the identified regions against the
ChIP-chip target sites validated independently by qPCR (Euskirchen et al., 2007). 15 out of 21 regions
validated positive by qPCR are common to our peak set. Similarly, PeakSeq also detects the same 15/21
qPCR validated regions. The 6 regions missed by both our proposed mixture model and PeakSeq have low
tag counts (average of 1.5 tag per 50 bps), high mappability scores (∼ 1) and moderate GC content (∼
0.4) in the STAT1 ChIP-Seq data. On the other hand, both our method and PeakSeq only detect 1 out of
21 regions that are validated negative by qPCR. Four contiguous bins in this region have high tag counts
(average of 22.25 tag per 50 bps) in the STAT1 ChIP-Seq data. We also compare our results to CisGenome
(Ji et al., 2008) which assumes independent and identically distributed negative binomial null distribution
for all the bins. The right panel of Figure 4 shows that the FDR control for CisGenome is not continuous.
That is, the FDR level for declaring all bins with ≥6 counts to be enriched is 0.099, whereas the FDR
level for declaring all bins with ≥7 to be enriched is 0.038 and the FDR for declaring all bins with ≥8
counts is 0.014 in Chromosome 13. We obtain 1047 (811) enriched regions under FDR of 0.038 (0.014) for
Chromosome 13 using the negative binomial background as in CisGenome. In contrast, the FDR control
based on our mixture model is almost continuous as shown in the left panel of Figure 4. In a way, our
model provides a mechanism to discriminate bins with same tag counts and thereby facilitates continuous
FDR control. We are currently exploring practical implication of this in terms of biological discovery.
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Figure 4: Comparison of FDR control. Left panel plots the FDR control against the number of bins
declared to be significant under our proposed mixture model. Right panel plots the FDR control under
the negative binomial null distribution as in CisGenome (Ji et al., 2008).

4 Two sample problem

Next, we introduce our modeling framework for inferring enriched regions relative to a control experiment
in two sample problem. Let (Yj , Xj) be the observed sample 1 (treatment) and sample 2 (control) tag
counts on bin j. Similarly, we define Zj to be the unobserved random variable specifying the underlying
latent state of bin j. Let DX and DY be the sequencing depths of control and treatment experiments,
respectively. Most of the current approach in the analysis of two sample ChIP-Seq apply linear scaling
to the observed tag counts to normalize for the difference in sequencing depths (Zhang et al., 2008a;
Rozowsky et al., 2009), which is undesirable under the assumption of commonly used count distributions.
Another popular strategy is to randomly sample DX counts from Y (assuming DY > DX). This is again
undesirable, since using only a fraction of the original data results in some information loss.

Let λjX and λjY denote the bin specific latent mean tag counts of Xj and Yj . We assume that Xj

and Yj are random samples from pX(.|λjX) = Po(λjXµjDX) and pY (.|λjY ) = Po(λjY µjDY ) respectively,
where µj = exp(β0 + β1Mj + β2GCj) and

λjX ≥ λjY if Zj = 0,
λjX < λjY if Zj = 1.

As in Newton et al. (2004); Keleş (2007), we assume that the latent mean counts (λjX , λjY ) to be a random
pair from an unknown bivariate distribution f , which is taken to be a mixture over the two hypotheses of
interest:

f(λjX , λjY ) = P (Zj = 0)f0(λjX , λjY ) + P (Zj = 1)f1(λjX , λjY )

where the densities f0 and f1 describe the fluctuations of the means within each hypothesis. The joint
distribution of λjX and λjY is related to a one-dimensional base distribution π = Ga(a, a). Under this
model assumption, we derive the marginal distribution of observed tag counts in the treatment sample
conditional on the sum of tag counts from both samples.

Therefore, our modeling approach automatically accounts for the difference in sequencing depths and
bypass the problem of linear based normalization. Given the marginal distribution of Yj conditioned on
Xj +Yj , inference for identifying enriched regions relative to input control at a particular FDR follows from
one sample problem. We are currently exploring practical advantages of this framework for two sample
analysis.
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5 Conclusions and on going work

We investigated the effect of mappability and GC biases that arise in high-throughput sequencing data.
We showed that these effects are significant in naked DNA samples, which represent the background
distribution of no enrichment. We proposed a zero inflated negative binomial regression model (ZINBreg)
that incorporates both the mappability and GC biases and showed that this model provides an excellent
fit as background distribution. We then utilized this background model for one sample analysis.

In one sample analysis, we considered a mixture modeling approach for the observed tag counts, in
which the non-enriched distribution is modeled with a ZINBreg and the enriched distribution is modeled
with a convolution of two negative binomials. We showed that the proposed mixture model fits the
actual STAT1 ChIP-Seq data quite well, and further demonstrated that this model is able to achieve good
operating characteristics based on independently validated qPCR results. We are currently applying our
proposed modeling approach for two sample analysis (Section 4) to automatically account for difference
in sequencing depths in identifying enriched regions in the presence of Input or other type of control and
in detecting differential enrichments between two ChIP-Seq samples. Comparison of one sample analysis
with two sample analysis that utilizes different controls (input DNA, naked DNA or IgG control) is very
likely to yield more insights on ChIP-Seq data analysis. We expect to have further results on this in time
for CAMDA 2009.
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Introduction 

Antibody-based Chromatin Immunoprecipitation assay followed by massive sequencing 

technology (ChIP-seq) has enable scientist to study protein-DNA binding in shorter time with less error 

and cheaper cost than ChIP-chip experiment. However, the large amount of data being produced and 

errors in procedure such as tags amplification, base-calling, image processing, sequence alignment pose 

new challenges in analyzing this high-throughput data. In order to process and separate biological signal 

from noise, computational and statistical approaches are required. One of them is data normalization 

which is very critical when comparing results across multiple samples. We introduced a nonlinear 

normalization algorithm and a mixture modeling method for comparing ChIP-seq data from multiple 

samples and characterizing genes based on their RNA polymerase II (Pol II) binding patterns (Taslim et 

al., 2009). Here, we are going to apply the same nonlinear normalization on the contest data sets 

comparing Pol II ChIP-seq with input DNA then use model-based classification and fdr (false discovery 

rate) to identify genes that are associated with enriched binding sites.  

 

Methods 

Preprocessing and determining putative binding sites 

ChIP-seq data for Pol II in unstimulated HeLa S3 (an immortalized cervical cancer) cell line are 

compared against matching sequenced input DNA control data sets (Rozowsky et al., 2008). Pol II HeLa 

data sets has three replicates. Each replicates has two, five, and four lanes, respectively. The matching 

input DNA has one replicate and thirteen lanes. For each replicate in one data set, we add up all the lanes. 

The different number of lanes in each experiment will be handled in the normalization process. Then, if 

the sample has more than one replicate, we calculate the average sequence counts for all replicates. 

The data sets we used have the alignment information produced by ELAND (Cox, unpublished 

software). We take only the sequence reads that are mapped uniquely to the genome (i.e. U0, U1, U2 type 

of match). In ChIP-seq protocol, a tag is sequenced by reading both ends of the ChIP fragment. Hence, 

the real binding sites are unknown. However, since Pol II are known to bind throughout promoter, 

upstream, and downstream regions of the activated gene, we feel it is unnecessary to do any shifting in 

our analysis.  
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Normalization 

Let xij be the Pol II binding quantity for bin i (i = 1, ..., n), where n is the total number of bins in a 

chromosome and j = 1, 2 refers to control (input DNA) and treatment (Pol II Hela) respectively. For each 

chromosome, we divide the region into bins of size 1000 nt (nucleotide) and report the number of 

sequences in each bin. Thus, xij is the total number of sequence reads that are mapped between location (i-

1) × 1000 and i × 1000 + 1 in sample j. If a particular sample has replicates, xij is the average of number 

of sequence reads that are mapped in all replicates. 1k-nt bin size is chosen to balance between number of 

data points and resolution. 

The purpose of normalization is to enable comparison between multiple experiments. Due to 

various errors throughout the processing the high-throughput data, the results of ChIP-seq data in 

different experiments will have bias and error. For example, experiments which have more number of 

lanes will produce more sequence reads compare to the ones with less lanes. Thus, without normalization, 

differential binding sites will be discovered because the effect of lanes not due to biological differences. 

Here, we use a three-step normalization process. It is based on locally weighted polynomial least square 

regression (Cleveland, 1988). This nonlinear method does not assume any relationship in the data.  

In the first step, we perform sequencing depth normalization, making the total number of 

sequences to be equal in both control and sample data.  

Equation 1 

 

Second, the mean of the difference counts are estimated and then subtracted from the observed difference 

to normalize the data with respect to the mean. 

Equation 2 

 

Where loess[.] are the fitted values obtained by regressing the observed counts of difference on the mean. 

Lastly, the normalized data calculated in the second step are divided by the estimated mean of variance 

obtained by regressing the absolute of the normalized data on the observed mean counts. 

Equation 3 

 

Finite Mixture Model for Differential Genes Selection 

In order to identify genes that are associated with differential binding quantity in HeLa Pol II vs. 

Input DNA, we fit a finite mixture model and model-based classification using the idea of false discovery 

rate. We assume that the data comes from three groups, i.e. no-change, positive- and negative-differential. 
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normalized 

The no-change group is assumed to come from a mixture of K-component Normal distributions, where K 

is estimated from the data. The positive- and negative-differential groups are assumed to follow an 

Exponential and the mirror of Exponential distribution respectively. In order to identify genes associated 

with differential binding quantity, the data di ∈  are grouped based on RefSeq gene 

database. Let W equals to the total number of genes in the database, then for each gene region w, we have  

 where R is the sets of fragments within a gene region . An 

empirical distribution is fitted based on . 

Equation 4 

 

Where is the unknown function of the observed data and the vector of unknown parameters 

( ;  denotes the Normal density function with mean ; I(.) is the indicator 

function which equals to 1 if condition specified in () is satisfied and 0 otherwise;  are the 

location parameter which in practice may be estimated by and . 

By maximizing the likelihood function using Expectation-maximization (EM) algorithm and selecting K 

using AIC (Akaike, 1973), a set of optimal parameters (  is obtained. The local false discovery rate is 

calculated as follows: 

Equation 5 

 

Results 

We apply the three-step nonlinear normalization and statistical modeling methods described 

above to the study comparing the Pol II binding quantity in HeLa cell line and matching input DNA.  

 

 
 
normalized  

CAMDA 2009, Chicago, IL, Oct 5-6, 20009 22



(a) (b) 
Figure 1 Plots to show the effects of the three-step normalization on the genome-wide data. Each point is a gene. Colors refer to 
different chromosome (a) raw data with clear bias toward the negative direction. (b) data normalized with respect to sequencing 
depth, mean and variance. 

Since Pol II has three replicates, we calculate the averages of all the replicates and compare it with input 

DNA. As demonstrated in Figure 1a, the raw data before any normalization is biased toward negative 

difference counts. This bias is due to the fact that there are more lanes of data in input DNA than in Pol II 

HeLa cells. Other processing error can also contribute to the bias toward larger mean counts. Without 

doing any normalization, longer genes (which will have larger mean counts) will be called as differential 

in many more times than shorter genes. Furthermore, more differential genes will be associated with less 

binding quantity. These systematic effects are what we are trying to correct by the three-step 

normalization. As shown in Figure 1b, the normalized data are no longer overwhelmed by bias toward the 

negative counts and longer genes. By normalizing the data with respect to depth, mean and variance, we 

are able to spread the points evenly around zero and reduce systematic error. Next, we fit the normalized 

difference with the mixture model using EM algorithm. Due to time constraints, the EM algorithm was re-

initialized 125 times to prevent it from getting stuck in a local optimum. Each time the EM step was 

terminated either after 2000 iterations or when the improvement is not greater than 10
-16

. Figure 2 shows 

the mixture of two exponential and three normal components which are found to best represent the data. 

Applying model-based classification, we find 294 genes are associated with differential binding sites 

using fdr < 0.1. 178 of these genes are associated with increased binding sites which indicate genes with 

significant amount of Pol II binding, while 116 of them are associated with decreased binding sites 

indicating binding sites for other proteins. 

 
Figure 2. The fit of the best mixture model on the normalized HeLa Pol II vs. input DNA data. The bars are the observation data. 
The optimal mixture model and its individual components are plotted. Blue (solid) line represents the best mixture model 
(mixture of two exponential and three normal components) imposed on the histogram of the normalized difference of binding 

quantity. Black (dashed), brown (dotted) and green (dot-dash) lines represent Normal components with (µ1=-21, σ1=58), (µ2=4, 
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σ2=19), (µ3=-1,σ3=4), respectively. Red (long dash) and magenta (two-dash) represent Exponential components with β1 = 

110and β2 =117 respectively. 

 

 

References  

Akaike,H. (1973) Information theory and an extension of the maximum likelihood principle. In 

International Symposium on Information Theory, 2
nd

, Tsahkadsor, Armenian SSR, pp. 267–281. 
 
Cleveland,W.S. (1988) Locally-weighted regression:An approach to regression analysis by local fitting. J. 

Am. Stat. Assoc., 85, 596–610. 
 
Khalili,A. et al. (2009) A robust unified approach to analyzing methylation and gene expression data. 

Comput. Stat. Data Anal., 53, 1701 – 1710. 

Rozowsky,J. et al. (2009) Peakseq enables systematic scoring of ChIP-seq experiments relative to 

controls. Nat. Biotechnol., 27, 66–75. 

 

Taslim, C. et al. (2009) Comparative study on ChIP-seq data: normalization and binding pattern 

characterization”, Bioinformatics, 25, 18, pp. 2334-2340 

 

 

CAMDA 2009, Chicago, IL, Oct 5-6, 20009 24



1 
 

Scoring of ChIP-seq experiments by modeling large-scale correlated 
tests 

 
Pingzhao Hu1*, Zhi Wei2*, Zhuozhi Wang1, Andrew D. Paterson1,3, Joseph Beyene1,3, 

Stephen W Scherer1,4 

 
1The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, 
Canada 
2Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, 
USA 
3Dalla Lana School of Public Health, University of Toronto, Health Sciences Building 
155 College St, Toronto, ON, M5T 3M7, Canada  
4Department of Molecular and Medical Genetics, University of Toronto, Toronto, 
Ontario, Canada. 
 
*Equally contributed to this work 
Correspondence should be addressed to P.H. (phu@sickkids.ca) 
 
 
Abstract 
 
Chromatin immunopercipitation followed by direct sequencing (ChIP-Seq) plays key 
roles in profiling DNA-protein interactions and determine transcription factor binding 
sites. One of major challenges in scoring the ChIP-Seq experiments is to control False 
Discovery Rate (FDR). The standard FDR procedures, due to ignore dependence among 
tests, suffer from loss of efficiency. Here we exploit to use the dependency information of 
adjacent regions to improve the rankings of enriched transcription factor binding sites.  
 
1. Introduction 
 
Because of the recent advancements in new high-throughput sequencing technologies, 
ChIP-seq has become a popular tool for genome-wide mapping of in vivo protein DNA 
association. In analyzing ChIP-seq data, it is typical to test hundreds of thousands of 
segments simultaneously. For example, Rozowsky et al. (2009) evaluated more than 
120,000 potential segments for identifying transcription factor binding sites in ChIP-seq 
Data. Therefore, it is necessary to control the false discovery rate (FDR, Benjamini and 
Hochberg, 1995). The FDR controlling procedures have been successfully applied in 
many large-scale studies such as microarray experiments, genome-wide association 
studies, ChIP-seq experiments, among others (Tusher et al., 2001; Storey and Tibshirani, 
2003, Sabatti et al., 2009; Rozowsky et al. 2009). Despite the increasing popularity, most 
commonly used FDR procedures are based on thresholding the ranked p-values 
(Benjamini and Hochberg, 1995; Storey, 2002), where the dependence among tests is 
ignored. The “do nothing” approaches may suffer from severe loss of efficiency. For 
example, Sabatti et al. (2003) found that the Benjamini and Hochberg (BH) procedure 
suffers from increased power loss with increased dependency among markers in a 
genome scan. The works of Nyholt et al. (2004) and Conneely et al. (2007) showed that 
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by exploiting the dependency structure, more precise FDR control can be achieved and 
hence the statistical power can be improved. Qiu et al., 2005; Efron, 2007 explored the 
correlation effects of SNPs at adjacent genomic loci on FDR analyses. 
 
The development of a multiple testing procedure essentially involves two steps: ranking 
the hypotheses and choosing a cutoff along the rankings. The ranking step is more 
fundamental. Different from Nyholt et al. (2004) and Conneely et al. (2007) that utilize 
the dependency to choose the cutoff, Wei et al. (2009) proposed to utilize the dependency 
to create more efficient rankings. The proposed procedure uniformly improves all p-value 
based procedures by re-ranking the importance of all SNPs. They explored to use a 
hidden Markov Model (HMM) to model the dependency of adjacent SNPs. Therefore, 
when deciding the significance level of a SNP, the neighboring SNPs are taken into 
account. They called the new multiple testing procedure as pooled local index of 
significance (PLIS). The goal of this analysis is to compare how that conventional “do 
nothing” procedures, that is the BH multiple testing proceeding, can be greatly improved 
by PLIS procedure with exploiting the HMM dependency in ChIP-seq experiments.  
 
2 Statistical Methods  
 
The HMM is an effective model to characterize the dependency among neighboring 
segments. This strategy has been widely used in copy number variation analysis (Colella 
et al., 2007; Wang et al., 2007). Here we use this approach to model enrichment of 
mapped tags in adjacent segments on chromosomes. In an HMM, each segment has two 
hidden states: enriched or not enriched, and the states of all segments along a 
chromosome form a Markov chain. The observed mapped tag data are generated 
conditionally on the hidden states via an observation model. 
 
2.1  Modeling of Enrichment of Mapped Tags Using A Hidden Markov Model  
 
Suppose there are km  no overlapping segments of length segmentL (typically 1 Mb) on 

chromosome .,,1, Kkk L=  The total number of segments is ! == k
K
k mm 1 . In order to 

determine whether a given target segment r is enriched in the number of mapped tags 
from the ChIP-seq sample compare to input-DNA control, it is typical to calculate a p -
value from a suitable statistical test, such as the cumulative distribution function for the 
binomial distribution as done by Rozowsky et al. (2009).  z -values related to the p - 
values can be obtained using appropriate transformations for further analysis.  
 
Let { }

kkmkk !!! ,,
1
L=  be the underlying states of the segment sequence on chromosome 

k  from the ,
5  end to the ,

3  end, where 1=
ki

!  indicates that segment i  from 
chromosome k  is enriched in the number of mapped tags from the ChIP-seq sample 
compare to input-DNA control and 0=

ki
!  otherwise. We assume that  

        
k

! is distributed as a stationary Markov chain                               (1) 

With transition probability )( 1, ijPa skkskij === !"" , and that 
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i
! and j

! are independent for ji ! ,                (2) 
i.e., segments on different chromosomes are independent. In an HMM, the observed data 
are assumed to be conditionally independent given the hidden states: 

 ( ) ( )!
=

=
km

i

kkikikkk FzpFzp
1

,, "" ,                        (3) 

For Kk ,,1L= . Let ( )
10

1~
kkikkikiki
FFZ !!! +" . Denote by ( )

kijk aA = the transition 
matrix, ( )

10
,

kkk
!!! =  the stationary distribution, { }

10
,

kkk
FFF =  the observation 

distribution, and ( )
kkkk
FA ,,!="  the collection of all HMM parameters. Let 

( )
kmkkk
zzz ,,

1
L=  be the observed z -values on chromosome k  and ( )

K
zzz ,,

1
L= . We 

assume that for a non-enriched segment, the z -values distribution is standard normal 
( )1,0

0
NF

k
= , and for an enriched segment, the z -values distribution is a normal mixture 

( )2
1

,
1

klkl

k

k
N

l

L
F !µ"

=
= . The normal mixture model can approximate a large collection 

of distributions and has been widely used (Pan, 2003). When the number of components 
in the normal mixture 

k
L is known, the maximum likelihood estimate (MLE) of the 

HMM parameters can be obtained using the EM algorithm (Sun and Cai, 2009; Wei et al. 
2009). When 

k
L  is unknown, Bayesian information criterion (BIC) can be used to select 

an appropriate
k
L .  

 
2.2 Optimal FDR analysis of scoring ChIP-seq experiment results 
 
Following Sun and Cai (2009), we define a local index of significance (LIS), that 
is, ( )zPLIS

i

k

i
0== ! " , which is the probability that a segment is a null (not enriched)  

given the observed data and where i is the ith segment on chromosome k and !̂ be an 
estimate of the HMM parameters. Denote by )()1( ,,

km
LISLIS L the ordered LIS values 

and )()1( ,,
km

HH L the corresponding hypotheses. Therefore, we can define the LIS 
multiple testing procedure as follows: 
 

Let
!
"
#

$
%
&

'= ( = ))(1

1
:max j

i

j

k LIS
i

il . Then reject all )(iH , for li ,,1L= .                    (4) 

 
Sun and Cai (2009) have shown that under some regularity conditions, the LIS  
procedure is optimal in the sense that it controls the FDR at level! . 
 
Although LIS is valid for FDR control, in practice it is desirable to combine the testing 
results from several chromosomes so that the global (or genome-wise) FDR is controlled 
at the nominal level. A more powerful approach is the pooled LIS procedure (PLIS). 
Following Wei et al. (2009), the PLIS procedure operates in three steps: 
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1. Calculate the plug-in LIS statistic ( )
kkiki
zPLIS

k

0== ! "  for individual 
chromosomes. 

2. Combine and rank the plug-in LIS statistic from all chromosomes, Denote by 
)()1( ,,

m
LISLIS L the ordered values and )()1( ,,

m
HH L  the corresponding 

hypotheses. 
3. Reject all ,,,1,)( liH

i
L=  where ( ){ }! "= = #)(11:max j

i

j LISiil . 
 
Wei et al. (2009) shows that PLIS is valid and asymptotically optimal. It is important to 
note that PLIS not only gives the optimal rankings of all hypotheses, but also suggests an 
optimal way of combining testing results from different chromosomes.  
 
3. Results 
 
3.1 Potential binding sites for STAT1 
In this analysis, we focus on scoring results of STAT1 ChIP-seq data set generated by 
Rozowsky et al. (2009). Using PeakSeq procedure, they initially identified 123,321 
potential binding sites for STAT1 
(http://archive.gersteinlab.org/proj/PeakSeq/Scoring_ChIPSeq/Results/STAT1/STAT1_T
argets/Extended/STAT1.txt). These are the potential targets that are found to be enriched 
in the STAT1 signal density maps compared to a simulated null random background. For 
each of these regions, Rozowsky et al. (2009) calculated a p-value from the cumulative 
distribution function for the binomial distribution to evaluate the enrichment of the 
number of mapped tags from the ChIP-seq sample compared to the normalized input-
DNA control. 
 
3.2 Transform p-values to z-values 
 
Based on PLIS multiple testing theory, we need to transform the p-values obtained from a 
statistical test to z-values. Following McLachlan et al. (2006), we convert the p-values 
obtained from the cumulative distribution function for the binomial distribution as shown 
by Rozowsky et al. (2009) into z-values as follows: )1(1

ii
pz !"=

! , where i
p is the p-

value for measuring the significance of enrichment of mapped tags in a given segment 
and ! is the )1,0(N distribution function. With this definition of i

z , departures from the 

null are indicated by large positive values of i
z . The distributions of z-values on 

different chromosomes are shown in Figure 1. For an enriched segment, we considered 
the z -values distribution in two cases: one is a single normal distribution and another is 
two normal mixtures.  
 
3.3 Correcting for multiple testing under dependence 
 
As a baseline, we apply Benjamini and Hochberg (BH) multiple testing procedure 
(Benjamini and Hochberg, 1995), which does not consider the dependence of mapped  
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Figure 1. Distribution of z-values on different chromosomes 

 
tags between neighboring regions, to adjust the p-values discussed in Section 3.1. The 
PLIS multiple testing procedure is applied to modeling the z-values discussed in Section 
3.2. Figure 2 demonstrates how the number of target binding sites varies for a range of 
different false-discovery rate thresholds for BH and PLIS multiple testing procedures. It 
is obvious that given the same FDR level, there are more significant segment sites 
identified by PLIS procedure than standard BH procedure. For example, given a false- 
discovery rate threshold 0.01, BH procedure identified 23,070 of these potential biding 
regions as significant region while PLIS procedure detected more than ~33,000 (L=1) of 
these biding segments as significant region. 
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Figure 2 The number of significant binding sites varies for a range of different false-
discovery rate thresholds for BH and PLIS multiple testing procedures 
 
We further explore the rankings of these potential bidding sites based on the p-values 
adjusted by BH and PLIS multiple testing procedures. As shown in Table 1, for the sites 
ranked on the top (say top 2,000), the number of common regions identified by BH and 
PLIS procedures is not high (~36 - 46% for top 2,000 sites). However, as the number of 
top regions increases, say top 4,000, the number of common regions identified by two 
multiple testing procedures are quite high (large than 80%). This implies that multiple 
testing with dependence procedure has strong effect on the most significant target biding 
sides.  
 
Number of Top Regions Number of Common 

Regions (BH vs PLIS_L1*) 
Number of Common Regions 

(BH vs PLIS_L2**) 
1000 113 127 
2000 727 927 
4000 3368 3251 
8000 7820 7608 
16000 15207 13626 
32000 28733 23854 
64000 56584 50259 

*L1- a signal normal distribution; ** two normal mixtures 
Table 1 The number of common regions based on different number of top regions ranked 

by BH and PLIS procedures, respectively 
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We compare the results obtained for STAT1 ChIP-seq against the ChIP-Seq results 
obtained by Robertson et al.  (2007) based on the BH and PLIS_L1 procedures to control 
FDR. Give a FDR level 0.05, we find that 21,340 and 25,632 STAT1 binding sites are 
present in the ChIP-Seq results obtained by Robertson et al.  (2007), respectively.  
 
4. Conclusion 
 
In this study, we applied the large-scale multiple testing under dependence procedure, 
that is, pooled local index of significance (PLIS), developed by Wei et al. (2009) to 
scoring ChIP-seq experiments.  The method uses HMM to model the dependence of 
mapped tags between neighboring segments. Essentially, PLIS is a “separate” analysis 
because, in the initial analysis stage of the method, the grouping information is exploited 
to calculate chromosome-wise HMM parameters; PLIS is also a “pooled” strategy 
because, in the last analysis stages of the approach, the group labels are dropped and the 
rankings of all hypotheses are determined globally. Similar idea was also explored by 
Efron (2004). The difference is that Efron suggests using identical FDR levels for all 
chromosomes, whereas here PLIS suggests using different FDR levels, which are 
automatically adapted to the features of all groups.  
 
Our analysis show that the PLIS multiple testing procedure, compared to conventional 
BH multiple testing approach can improve identifying significant segments enriched with 
mapped tags. We are exploring whether the same conclusions can be made when the 
PLIS multiple testing framework is applied to the scoring results identified by other peak 
identification procedures, such as CisGenome (Ji et al., 2008). We are also comparing the 
results obtained for STAT1 ChIP-seq with other studies in detail. 
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ABSTRACT 
Next-generation sequencing technologies are increasing our 
ability to study genome function. A new and rapidly 
growing family of assays for measuring the genome-wide 
profiles of mRNAs, small RNAs, transcription-factor 
binding, chromatin structure and DNA methylation status 
are now being implemented by applying the massively 
parallel, ultrahigh-throughput DNA sequencing systems. 
These rapid growths demand reliable, fast and easy-to-use 
analysis tools. We present the SeqMapReduce software for 
parallelizing sequence mapping using the cloud computing 
technology. The speed is quasi-linear to the number of 
computing nodes available. It took 4.5 minutes to map 6 
million sequence reads to the human genome with 32 
computing nodes. A comparison between SeqMapReduce 
and CloudBurst demonstrated that SeqMapReduce was 57.9 
times faster than CloudBurst on average. We also present a 
user-friendly web server for unsophisticated users. The 
SeqMapReduce software and web service are available at 
http://www.seqmapreduce.org. 
 

1 INTRODUCTION  
Nearly 80 gigabytes of sequence data come out for each run 
of a typical high-throughput sequencer available at the 
current stage, and the technology is improving rapidly. 
Mapping these sequences onto a genome, e.g., the human 
genome, takes up to several days for an upscale modern 
computer. Bioinformatic analysis often requires multiple 
rounds of mapping, using different parameters, such as the 
maximum number of mismatches allowed, in order to 
determine the best mapping result. Such efforts would take 
weeks to accomplish, and usually cannot be done in a 
typical biology lab that generates the sequencing data.  
    A number of algorithms have been developed for efficient 
sequence mapping, including ELAND (Cox, unpublished), 
, RMAP (Smith et al., 2008), SeqMap (Jiang et al., 2008), 
SOAP (Li et al., 2008), ZOOM (Lin et al., 2008) and others. 
ELAND, RMAP, SeqMap and SOAP  shared the  idea  of 
first identifying the exact matching seeds and then 
  
*To whom correspondence should be addressed.  

extending to the full sequences. While ELAND, RMAP, and 
SeqMap index the sequence reads, SOAP indexes the target 
genome, and thus requiring much larger memory. RMAP 
can map reads with or without error probability information 
(quality scores) and supports paired-end reads or bisulfite-
treated reads mapping. All these algorithms were designed 
to run on a single computer, and took dozens of hours to 
map hundred gigabytes of sequence data. 
    A key feature for mapping high-throughput sequences is 
that the same task is repeated for a huge amount of times. 
This feature makes parallel computing a tempting option for 
speeding up the computation. We developed a sequence 
mapping algorithm, SeqMapReduce, using the cloud 
computing technology. The cloud computing technology 
was chosen because users can easily purchase inexpensive 
computing time from cloud computing solution providers 
such as Google, Amazon, Microsoft, and IBM, and 
therefore an ordinary user can use SeqMapReduce with her 
laptop. We also provide a user-friendly web server for those 
who do not even want to install any software at 
www.seqmapreduce.org .   
    SeqMapReduce utilized the Apache Hadoop software 
framework. Hadoop supports data intensive distributed 
applications under a free license. It enables applications to 
work with thousands of nodes and petabytes of data. 
Hadoop is an open-source implementation of the 
MapReduce (Dean et al., 2004) programming model. The 
basic idea of MapReduce is to break the computational tasks 
into a Map phase that generates intermediate key/value pairs 
and a Reduce phase that merges the intermediate values 
associated with the same intermediate key. 
    CloudBurst (Schatz, 2009) is another program for mapping 
sequences using a MapReduce strategy. The major 
differences between SeqMapReduce and CloudBurst are as 
follows. First, SeqMapReduce provides a web application, 
which eliminates the hassles of software installation or even 
hardware upgrade. Second, SeqMapReduce implemented a 
in memory seed-and-extension and late emission strategy, 
which tremendously reduced the amount of intermediate 
results stored on the cluster and transmitted between the 
computing functions, resulting in 26 to 97 folds of speed 
increases on the datasets being tested.  
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2 METHODS 

SeqMapReduce is implemented on the MapReduce 
programming model. Under the MapReduce framework, 
SeqMapReduce implemented a map function (mapper) and 
a reduce function (reducer) [Figure 1]. The workflow of 
MapReduce is as follows.  

Pre-processing: formatting the genome 
  The target genome is segmented into segments  of the same 

length. Each segment is recorded with a tag/seq pair. The tag  
records the chromosomal location of the segment, which also 
serves as an identifier of the segment. The seq is the actual DNA 
sequence. After pre-processing, all segments are written into a file 
which will be automatically partitioned and loaded to all 
computing nodes of a  Hadoop cluster. Once a genome is 
formatted, it can be re-used for all mapping tasks on this cluster  
without formatting again. 

 
Map phase: mapping sequences using seed-and-extension 
  In the map phase, the formatted genome segments are split into 

roughly equal size subsets and each subset is sent to a mapper 
function. In each Mapper, a hash table is built for the sequence 
reads and scan for seed match on the segments of the reference 
genome. Every sequence read is stored in the hash table as a 
key/value pair. We utilized the pigenhole principle to find qualified 
seed matches. A read is divided into n seeds, where n depends on 
the maximum number of mismatched allowed. If this number 
equals 2, then n equal to 4. In this case, a qualified seed match is 
found if at least 2 out of 4 parts of the reads are exactly matched 
with the genome segment. Once a qualified seed match is found, 
the read and the genome segment will be scanned for extended 
matches. If the extended matches satisfy a pre-specified sensitivity 
threshold, this match result will be transferred to the reducers using 
a key/tmp_res pair. Here the key is the same key as the read, and 
the  tmp_res records the temporary results including the read and 
the genome segment . The seed-and-extension approach greatly 
reduced the amount of intermediate results stored and transmitted 
in a Hadoop cluster. Because indexing the temporary results is 
heavily I/O-bound, reducing the amount of I/O boosted the 
performance. 

Reduce phase: aggregating intermediate results to output 
  The Reducer receives all the key/tem_res pairs emitted from 

the Mappers, and organizes the final results as key/final_res pairs. 
The key is the identifier of the read. The final_res records all 
matching genome segments. The Reducer outputs the final 
key/final_res pairs ordered by the values of keys.  

3 RESULTS 
3.1 The web server. 
We implemented SeqMapReduce as a web application 

(www.seqmapreduce.org). Users can access this web application 
using any web browsers. The computing engine of this web 
application is the  Illinois Cloud Computing Testbed (CCT) cluster 
with 108 computing nodes. Each node is equipped with eight 64 bit 
2.6 GHz CPUs, 16 GB RAM, and 2 TB storage.  
    We evaluated performance of SeqMapReduce with different 
numbers of computing nodes and using several datasets of 
different sizes. 

First, we mapped two sets of human Chip-Seq reads from 
the CAMDA 2009 Contest Datasets (Rozowsky et al., 2009) 

 (4.5 million reads and 6.2 million reads) to the human genome 
(3.5 Gbp). Two mismatches were allowed for each sequence 
match. The running time decreased quasi-linearly as the number of 
computing nodes increased [Figure 2]. With all the 32 nodes, the 
SeqMapReduced took 276 seconds to map 6.2 million reads to the 
human genome . The hash table design within each mapper  
enabled the runtime to be sub-linear to the number of sequence 
reads . For example, the average runtime of mapping 6.2 million 
reads was 1.03 fold of that of mapping 4.5 million reads, although 
there was 1.4 fold difference in the data sizes.  We totally tested 16 
CAMDA data sets. The detailed mapped results can be found at 
www.seqmapreduce.org/wiki/index.php/CAMDA2009_results . 
    We also compared the running time of SeqMapReduce and 
CloudBust with a human Illumina/Solexa dataset from the 1000 
Genomes Project (accession SRR001113). We carried out the test 
with  24 computing nodes, using only one CPU on each node. Four 
sets of sequence reads were used; each set contained 1, 2, 4, and 8 
million reads. Up to 2 mismatches were allowed. SeqMapReduce 
exhibited an average of 58.9 fold of speed acceleration in these 
tests (Table 1). Importantly, the runtime ratio of the two algorithms 
increased as the size of the input dataset increased, in a consistent 
manner. Considering a typical experiment may generate hundreds 
of millions of reads, we estimate the speed difference between 
these two algorithms to be in the range of thousand to ten thousand 
folds in a real data analysis.   
 
Table 1.  Runtime comparison of SeqMapReduce and CloudBurst 
|Software| 1 M Reads 2 M Reads 4M Reads 8 M Reads 

CloudBurst 5137 s 10529 s 22118 s 42639 s
SeqMapReduce 195 s 248 s 322 s 437 s
Runtime Ratio      26.4          42.5               68.8             97.6

1, 2, 4, and 8 million  Solexa reads were mapped to the  human 
genome using  24 computing nodes. 

 
3.2 Running SeqMapReduce on the Amazon EC2 system. 
Amazon Elastic Compute Cloud (EC2) provides an easy-to-use 
and cost effective resource for cloud computing. Users can 
purchase the computing time as needed. We tested SeqMapReduce 
on two mouse Chip-Seq datasets (2 millions and 6 millions reads 
respectively). EC2 provides two options of computing time, i.e., 
the "Large Standard Instances" and the "High-CPU Instances”, 
with the former one being less expensive. We used "Large 
Standard Instances"for our tests (Table 2). The runtimes on EC2 
were longer than those on the CCT cluster. This is likely due to the 
better hardware of the CCT cluster. Again, SeqMapReduce 
achieved quasi-linear speed increment as the number of computing 
nodes increased (Table 2). For example, SeqMapReduce gained 
8.67 fold of speed increment on 32 computing nodes as compared 
to 4 nodes. It cost us $99.01 to finish these tests. The quasi-linear 
speed acceleration of SeqMapReduce enables about N fold of 
speed gain with N computing nodes. This property reduces the 
computing time from days to hours or minutes with several dozen 
nodes.  
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Table 2.  Runtime of SeqMapReduce on Amazon EC2 
|Reads| 4 nodes 8 nodes 16 nodes 32 nodes 

2 Million  10056 s 4309 s 2242 s 1160 s
6 Million              17132 s      7719 s            3835 s        1976 s

2 and 6 millions of  mouse Chip-Seq reads were mapped to the 
mouse genome (2.6 Gbp) using  Amazon EC2. Up to 2 mismatches 
were allowed. 
 
 
 
 

 

Fig. 1.   The SeqMapReduce Program Framework. 

 

 
Fig. 2. Running time of SeqMapReduce on the CAMDA 2009 
datasets in the CCT cluster. Two data sets were tested, one is from 
Pol II ChIP-seq FC201WVA_20080307_s_5 with 4.5 million 
reads, the other is from IFNg stimulated STAT1 ChIP-seq 
FC302MA_20080507_s_1 with 6.2 million reads. 
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APPENDIX 
 

1 COMPARATIVE ANALYSIS OF SEQMAPREDUCE AND CLOUDBURST 
 
How to reduce the amount of data communicating between mappers and reducers is a ctritical issue of the MapReduce 
framework. SeqMapReduce builds a Hash Table of all Reads in every Mapper, scans against the splitted Genome and emmits 
qualified aligned results to the Reducers, which simply collect and sort the final output. Within each Mapper, SeqMapReuce 
utilizes the Pigeonhole Principle to filter out large portion of unqualified alignments. For example, if at most 2 mismatches 
are allowed, SeqMapReduce divides the Read into 4 parts, only the Genome sequences that exactly match 2 out of 4 parts 
needed to be extended in the Mapper. A large amount of random matches  are filtered out, and the data load in the Mapper-
Reducer transmission is significantly reduced.  

On the other hand, CloudBurst emmits short keys both from reads set and the reference Genome, sorts the keys by 
the Hash functionality provided by the Hadoop system itself, and does extension in the Reducers on reads and reference 
sequences with shared key. The CloudBurst algorithm is not fit for short sequence mapping in the MapReduce framework 
due to the following flaws. The major limitation of CloudBurst is that it generates too many exact matches by chance. For 
example, with 7 bp seed length (read length=36bp, the number of allowed mis-matches k=4), the expected number of 
occuerance of a seed by chance in the Human Genome only (2.87 Gb) ≈ 175,000.  Even if the maximum  mis-matches k=2, 
this number ≈ 171 (seed length=12).  Since CloudBurst emmits seeds both from reference Genome as well as Reads, if there 
are 7 M Reads, the number of random occurance from Reads is 427 (k=4) and 0.4 (k=2). Therefore, about 175,427 and 171.4 
more un-necessary (seed, MerInfo) pairs are emitted  per seed, which should have been filtered in the Mappers. Due to the 
big number of seeds,  a huge amount of intermediate (seed, MerInfo) pairs are tranfered from Mappers to Reducers, slowing 
down the system significantly due to the heavy I/O loads. Secondly, in the Reduce phrase, because all potential aligned reads 
and ference sequences are shared by the same key, it needs to do alignments for all pairs of read-reference within the 
Reducer. The large number of random occurance of the seed as mentioned above makes this join computation formidable. 
Thirdly, For every seed, the positions in the reference or read, left flanking and right flanking sequences need to carried with 
the seed and transmitted to the Reducers; this considerable amount of data could be reduced sinificantly if indexing and 
processing in the memory in a Mapper before qualified results are emmited to the Reducers.  
 
 

Table S1.   Features of SeqMapReduce and CloudBurst 
 
Program Algorithm Web 

Service 
Mapper 
Size 

Data 
Transfer1 

Disk Space 
Consumed 

Hash Table Design Genome 
Reusaable2 

Indels Paired 
End Read 

Read Quality 
Information3 

SeqMapReduc Pigeonhole 
Principle 

Yes Big Small Small Built in  the Mapper Yes Allowed No No 

CloudBurst Seed and 
Extend 

No Small Big Large Hadoop System Hash 
Table 

Yes Allowed No No 

 
1. The data transferred between Mappers and Reducers. 
2. Genome only needs to be formatted once and put to the Hadoop Distributed File System; and it is reuserable for subsequent tasks. 
3. Unlike RMAP, CloudBurst doesn’t use the read quality information. SeqMapReduce doesn’t use quality information in this version. 
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2 THE SEQMAPREDUCE WEB SERVICE 
 
A easy-to-use SeqMapReduce Web Service is also open to the public. The screenshot of the service (www.seqmapreduc.org) 
is shown in Fig. S1. 
 
 

 
 

Fig. S1.  Screenshot  of the SeqMapReduce Web Service. Read Sequences can be uploaded to the server with the zip format. Several Genomes are 
supported in the SeqMapReduce Web Service. ELAND and other output formats are supported. Results of several millions of Reads usually can be returned 
to the users email in a few minutes.  
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Extended Abstract 
 

MicroRNAs are small non-coding RNAs known to regulate the target transcripts by 
promoting mRNA degradation and suppressing translation [1,2].  To date, several hundred 
precursor microRNAs (pre-microRNAs) and mature microRNAs have been annotated in several 
mammalian genomes [3].  Despite of such development, the genomic landscape of most 
primary microRNAs (pri-microRNAs), however, has not been fully annotated.  Without knowing 
the transcription start site (TSS) and promoter regions of their primary forms (pri-microRNA), it 
is difficult to identify the transcription factors and their binding sites that regulate the microRNA 
transcription, and therefore hinders the understanding of microRNA-mediated regulatory 
network. 

 
Previously, using RNA polymerase II (Pol II) ChIP-seq data, we developed a computational 

approach to indentify promoter region and TSS of pri-microRNAs, based on the observation that 
Pol II binding sites are enriched around the promoter regions of the expressed genes [4].  This 
model used the biological knowledge that most microRNAs (not all of them) are transcribed by 
RNA Polymerase II [5].  The overall procedure is to first model Pol II binding pattern near the 
TSS of well annotated protein-coding genes that are highly expressed, and then to search 
similar patterns in the upstream region of annotated mature or pre-microRNA. 

 
In this study, we indentified promoter regions of intergenic microRNAs in HeLa cells using 

the Pol II ChIP-seq data provided by the CAMDA 2009 challenging dataset [6].  Highly 
expressed genes were selected based upon microarray experiment using Affymetrix platform 
(GEO number: GSE3051 [7]).  Following the similar strategy as we did previously [4], we 
focused only on that genes not overlapping or close to other genes (length greater than 10,000-
bp and with no other genes present within 10,000-bp of its TSS).  This results in 4,120 
expressed genes and 2,682 unexpressed genes in HeLa cells, based on the absent and present 
calls in the Affymetrix MAS5 algorithm. To evaluate the predictive power of the provided Pol II 
ChIP-seq data and our model to identify active promoters in HeLa cells, we randomly selected 
1/4 of expressed genes to train our model.  The remaining genes, both expressed and non-
expressed, were used as test sets. The area under the curve (AUC) in the recursive operative 

CAMDA 2009, Chicago, IL, Oct 5-6, 20009 38



curve (ROC) reached 0.86 in differentiating all the expressed genes in the test set and 
unexpressed genes (Figure 1), suggesting excellent predictive power of our strategy. We further 
divided the expressed gene into three categories based on their expression levels. The result 
(Figure 1) clear demonstrates that the prediction accuracy of our model is higher for the genes 
that are highly expressed.  

 

 

Figure 1. ROC curve for TSS prediction 
of protein coding genes. The expressed 
genes were separated into three categories, 
high (light blue), low (green), and medium 
expressed gene (yellow). The three 
categories expressed genes and non-
expressed genes are considered positive 
and negative sets, respectively. One fourth 
of the genes are used as training data, while 
the remaining as test set. The ROC curve 
was generated using ROCR library in R 
project (http://www.r-project.org).  

  
We obtained annotations of 685 human mature or pre-microRNAs from the miRBase 

microRNA sequence database (version 11.0, [3]). Among them, 419 microRNAs that locate 
between protein-coding genes (or intergenic microRNAs) were used for promoter identification. 
Using the model parameters estimated based on Pol II binding patterns around the transcription 
start sites of protein coding genes, we indentified 83 active microRNA promoters in HeLa cell 
(with false discovery rate 
≤ 0.2). The median value 
of the length of 
regulatory region was 
1,476-bp, with longest 
and shortest widths of 
4,989-bp and 397-bp, 
respectively (Figure 2A). 
The distances between 
the identified TSS and 
their corresponding 
mature or pre-microRNA 
also differ in a great 
deal, ranging from 200 to 
10,000-bp, with median 
distance around 3600-bp 
(Figure 2B).  

 

Figure 2. Statistics of predicted microRNA promoters. Pie diagram 
shows the numbers of microRNAs with different ranges of (A) promoter 
lengths and (B) distances between their predicted transcription start sites 
and annotated mature and pre-microRNAs. 
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We further examined the sequence features of identified promoter regions, including their 
conservation levels across evolution and their relationship with annotated CpG islands. We 
observed high GC content within or around the predicted regulatory regions. Among the 83 
predicted microRNA promoters, 66 promoters (79.5%) were found to either contain or overlap 
with annotated CpG island [8]. In addition, the identified promoter region and transcription start 
site also demonstrated higher conservation (PhastCons scores based on 17 species, including 
mammalian, amphibian, bird, and fish [8]) comparing to randomly selected regions (red dash 
line in Figure 3).  

 

 

Figure 3. Sequence features around 
predicted microRNA promoter. CpG islands 
and conservation score were retrieved from 
the UCSC genome browser, where CpG 
islands were defined as genomic regions of 
the length greater than 200 bp, with a minimal 
GC content of 50%, and the ratio of observed 
/expected CpG greater than 0.6. The 
conservation scores were calculated based 
on a phylogenetic hidden Markov model that 
measures the evolutionary conservation in 17 
vertebrates [8]. 

 
We searched the STAT1 binding 

sites identified by Gerstein’s group [6] in 
83 predicted microRNA promoters.  
Among these, promoter regions of 41 
microRNAs (49.4%, Supplement table 
S1) contain or overlap with STAT1 
enriched regions. These represent the 
microRNAs that are potentially regulated 
by STAT1 in HeLa cells in response to 
interferon γ stimulation. Most promoters 
contain one binding sites, while the 
promoters of hsa-mir-21 and hsa-mir-
92b have two STAT1 target sites, and a 
microRNA cluster, hsa-mir-193b and 
hsa-mir-365-1, has three target sites.  
We further compared the density of 
STAT1 target sites related to the 
distance from transcription start sites, for 
both protein coding genes, whose 

 
Figure 4. Percentage of genes containing STAT1 
binding sites within every 1KB region surrounding 
transcription start sites.  The calculation is based on 
36,998 STAT1 binding sites identified in the PeakSeq 
algorithm with FDR ≤ 0.05 [6] and their relative locations 
with 4,120 expressed coding genes and 83 predicted 
microRNAs.  
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annotations are well established, and microRNAs.  We counted the number of STAT1 binding 
sites in every 1,000-bp interval from 3,000-bp upstream to 3,000-bp downstream related to TSS 
of 4,120 expressed coding genes and for the 83 microRNAs predicted to be actively transcribed.  
The percentage of genes contains STAT1 targets in each 1,000-bp interval were calculated 
(Figure 4). We observed significant enrichment of STAT1 binding sites within -1,000 bp to 
+1,000 bp of the transcription start site, for both protein coding genes (34%) and microRNAs 
(38%). 

 
High throughput DNA sequencing offers new opportunities for genomic research. In the 

current study, we identified the promoter regions of 83 microRNAs using Pol II ChIP-seq data in 
HeLa cell.  The identified regions correlate with annotated CpG islands, and are highly 
conserved across multiple species. In the predicted microRNA promoters, many include STAT1 
binding sites while HeLa cells were stimulated by interferon γ; these microRNAs were potentially 
responding to interferon stimulation through activation of STAT1.  
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Supplementary table 1. List of 83 microRNAs and their predicted transcription start sites and 
promoter regions. 
 

microRNA Chromosome Strand microRNA position Predicted TSS Predicted promoter region CpG  
island 

STAT1 
binding sites 

hsa-mir-1259 chr20 + 47330254-47330364 47328454 47327958-47329130 1 1 
hsa-mir-21 chr17 + 55273409-55273480 55270009 55268897-55273231 0 2 
hsa-mir-24-2 chr19 - 13808101-13808173 13814573 13811422-13815167 1 1 
hsa-mir-23a chr19 - 13808401-13808473 13814673 13811722-13815033 1 1 
hsa-mir-27a chr19 - 13808254-13808331 13814731 13811756-13814979 1 1 
hsa-mir-92b chr1 + 153431592-153431687 153430192 153429022-153431598 2 2 
hsa-mir-1304 chr11 - 93106488-93106578 93114378 93113614-93114931 1 1 
hsa-let-7i chr12 + 61283733-61283816 61283333 61281958-61283985 1 1 
hsa-mir-760 chr1 + 94084976-94085055 94084576 94083843-94086408 2 1 
hsa-mir-940 chr16 + 2261749-2261842 2257949 2257515-2258728 1 1 
hsa-mir-320a chr8 - 22158420-22158501 22158701 22157984-22159040 1 0 
hsa-mir-219-1 chr6 + 33283590-33283699 33280390 33280273-33280811 1 0 
hsa-mir-1289-1 chr20 - 33505190-33505333 33506533 33505758-33507220 1 1 
hsa-mir-196b chr7 - 27175624-27175707 27176107 27175306-27176348 1 0 
hsa-mir-632 chr17 + 27701241-27701334 27701041 27700771-27701814 1 0 
hsa-mir-196a-2 chr12 + 52671789-52671898 52664189 52662019-52667008 1 1 
hsa-mir-141 chr12 + 6943521-6943615 6941121 6940221-6941928 0 0 
hsa-mir-200c chr12 + 6943123-6943190 6941123 6940217-6941937 0 0 
hsa-mir-639 chr19 + 14501355-14501452 14501155 14501094-14501895 1 0 
hsa-let-7a-1 chr9 + 95978060-95978139 95968260 95967698-95969675 1 1 
hsa-let-7f-1 chr9 + 95978450-95978536 95968450 95967669-95969581 1 1 
hsa-mir-20a chr13 + 90801320-90801390 90797920 90797290-90799576 1 1 
hsa-mir-19b-1 chr13 + 90801447-90801533 90797847 90797338-90799565 1 1 
hsa-mir-92a-1 chr13 + 90801569-90801646 90797969 90797241-90799589 1 1 
hsa-mir-18a chr13 + 90801006-90801076 90797806 90797321-90799595 1 1 
hsa-mir-19a chr13 + 90801146-90801227 90797946 90797253-90799584 1 1 
hsa-mir-17 chr13 + 90800860-90800943 90797860 90797325-90799550 1 1 
hsa-mir-484 chr16 + 15644652-15644730 15644452 15643650-15645182 0 1 
hsa-mir-374a chrX - 73423846-73423917 73428917 73428175-73429954 1 1 
hsa-mir-545 chrX - 73423664-73423769 73428969 73428120-73429962 1 1 
hsa-mir-564 chr3 + 44878384-44878477 44878184 44877826-44878917 1 0 
hsa-mir-220c chr19 - 53755341-53755423 53763823 53763323-53764214 0 1 
hsa-mir-1282 chr15 - 41873149-41873249 41880249 41879515-41880834 1 0 
hsa-mir-1281 chr22 + 39818463-39818516 39817263 39816769-39818930 1 1 
hsa-mir-607 chr10 - 98578416-98578511 98582111 98581328-98583103 1 1 
hsa-mir-659 chr22 - 36573631-36573727 36575327 36575046-36575917 1 0 
hsa-mir-658 chr22 - 36570225-36570324 36575324 36575041-36575930 1 0 
hsa-mir-450b chrX - 133501881-133501958 133511358 133510499-133511725 1 0 
hsa-mir-1285-2 chr2 - 70333554-70333641 70338641 70338362-70339227 1 1 
hsa-mir-503 chrX - 133508024-133508094 133511294 133510543-133511729 1 0 
hsa-mir-542 chrX - 133503037-133503133 133511333 133510533-133511729 1 0 
hsa-mir-450a-2 chrX - 133502204-133502303 133511303 133510505-133511735 1 0 
hsa-mir-424 chrX - 133508310-133508407 133511407 133510454-133511752 1 0 
hsa-mir-450a-1 chrX - 133502037-133502127 133511327 133510508-133511706 1 0 
hsa-mir-96 chr7 - 129201768-129201845 129207645 129206528-129208221 1 1 
hsa-mir-183 chr7 - 129201981-129202090 129207690 129206551-129208188 1 1 
hsa-mir-550-2 chr7 + 32739118-32739214 32734318 32733922-32735381 1 1 
hsa-mir-146b chr10 + 104186259-104186331 104182259 104181579-104182655 1 0 
hsa-mir-101-1 chr1 - 65296705-65296779 65306379 65304635-65307079 2 0 
hsa-mir-202 chr10 - 134911006-134911115 134921115 134920762-134921221 0 0 
hsa-mir-182 chr7 - 129197459-129197568 129207568 129206461-129208322 1 1 
hsa-mir-662 chr16 + 760184-760278 750584 750191-751986 0 0 
hsa-mir-200b chr1 + 1092347-1092441 1082747 1082554-1083767 1 0 
hsa-mir-193a chr17 + 26911128-26911215 26910328 26909297-26911052 1 1 
hsa-mir-210 chr11 - 558089-558198 566598 565841-566918 1 1 
hsa-mir-505 chrX - 138833973-138834056 138842856 138842113-138844047 1 1 
hsa-mir-1303 chr5 + 154045529-154045614 154040729 154040224-154042138 0 1 
hsa-mir-886 chr5 - 135444076-135444196 135444396 135443930-135444899 1 1 
hsa-mir-150 chr19 - 54695854-54695937 54696137 54694991-54696467 0 0 
hsa-mir-200a chr1 + 1093106-1093195 1083106 1082373-1083797 1 0 
hsa-mir-34a chr1 - 9134314-9134423 9141423 9141119-9141516 0 0 
hsa-mir-365-1 chr16 + 14310643-14310729 14303643 14301804-14305383 1 3 
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hsa-mir-301b chr22 + 20337270-20337347 20336470 20335816-20337176 1 0 
hsa-mir-193b chr16 + 14305325-14305407 14303525 14302053-14305321 1 3 
hsa-mir-132 chr17 - 1899952-1900052 1900452 1899182-1900821 1 0 
hsa-mir-212 chr17 - 1900315-1900424 1900624 1899191-1900820 1 0 
hsa-mir-320b-1 chr1 + 117015894-117015972 117011694 117011245-117012545 1 0 
hsa-mir-130b chr22 + 20337593-20337674 20336393 20335901-20337204 1 0 
hsa-mir-613 chr12 + 12808850-12808944 12803050 12802708-12804273 0 1 
hsa-mir-1302-2 chr15 - 100318185-100318322 100319322 100319002-100319427 1 0 
hsa-mir-548h-2 chr16 - 11307798-11307885 11314485 11313572-11314726 0 1 
hsa-mir-181d chr19 + 13846689-13846825 13844689 13844317-13845428 1 0 
hsa-mir-181c chr19 + 13846513-13846622 13844713 13844291-13845408 1 0 
hsa-mir-125a chr19 + 56888319-56888404 56883319 56882480-56885676 0 0 
hsa-mir-1826 chr16 + 33873009-33873093 33870209 33869987-33871815 1 0 
hsa-mir-345 chr14 + 99843949-99844046 99841549 99840687-99843457 1 1 
hsa-mir-99b chr19 + 56887677-56887746 56883277 56882520-56885670 0 0 
hsa-let-7e chr19 + 56887851-56887929 56883251 56882540-56885677 0 0 
hsa-mir-1302-3 chr2 - 114057006-114057143 114058343 114057544-114059007 1 0 
hsa-mir-135b chr1 - 203684053-203684149 203685749 203684904-203685968 0 0 
hsa-mir-1253 chr17 - 2598122-2598226 2605426 2605062-2605910 1 0 
hsa-mir-1247 chr14 - 101096377-101096512 101097712 101096659-101097939 1 0 
hsa-mir-1224 chr3 + 185441887-185441971 185439487 185439267-185440572 0 0 
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Introduction 

 

Next generation sequencing, microarrays and other functional genomics technologies are 

changing the way in which biological and biomedical research is carried out by providing 

genome-wide data on various cellular phenomena. However, archiving, managing, and analyzing 

the large datasets produced can be challenging using the current generation of database-based 

technologies.   In this article, we described the design and implementation of the Cistrack 

system, which integrates cloud-based computing platforms with databases.  The Cistrack 

bioinformatics system (https://www.cistrack.org) is currently used to support large scale 

genomics project such as modENCODE (www.modencode.org). It provides a simple, 

lightweight and integrated solution for archiving the raw data, processing it, and sharing the 

results with the community.  

 

Cistrack consists of the following four major components:  

1. A database for managing genomics, expression and related data. 

2. Data analysis pipelines for large-scale studies of cis-regulatory elements.  

3. A storage cloud for archiving data and a compute cloud to support the pipeline analysis 

of data as well as data reanalysis. 
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4. A web portal containing Web 2.0 widgets for browsing, downloading and analyzing 

Cistrack data.  

See Figure 1.  Components 1, 2 and 3 are relevant to this paper and are described in more detail 

below.   

 

Until recently, management of biological data has been done primarily using databases.  There 

are three challenges with this approach today.   First, today’s high throughput sequencing 

machines, such as the Illumina Genome Analyzers, are producing 1 TB or more of data per run 

and this is simply too much data to be managed with today’s relational databases.  Sequencing 

datasets will grow even larger in the future.  Second, there are so many different databases today 

that integrating data across them is more and more of a challenge.  Third, as the size of data 

grows larger and as the number of datasets that need to be integrated increases, databases are not 

always the best platform for managing data to support computation, especially high performance 

computing. 

 

Cistrack differs from related projects, such as CisRED (Robertson et. al., 2006) and CEAS (Ji et. 

al., 2006), in that Cistrack provides complete management and analysis capabilities for massive, 

raw genome-wide data.  

 

Cloud Computing Platforms 

 

Cistrack not only uses databases to manage data, but also integrates cloud computing services.  

Cistrack’s unique integration with cloud computing services has helped to address each of the 

problems described above that databases have when working with very large biological datasets.   

 

Although there is not standard definition of a cloud today, a good working definition for the 

purposes here is to define a cloud as a computing platform consisting of racks of commodity 

computers that provide on-demand resources and services over a network, usually the Internet, 

with the scale and the reliability of a data center (Grossman 2009).  
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There are at least two different, but related, types of clouds: the first type of clouds provide 

computing instances on demand, while the second type of clouds provide computing capacity on 

demand.  Amazon's EC2 services (aws.amazon.com) are an example of the first category.   The 

Eucalyptus system (Nurmi  et. al., 2009) is an open source system that provides on-demand 

computing instances and shares the same APIs as Amazon's EC2 cloud. 

 

The Google File System (GFS) is a distributed file system that is designed to support extremely 

large datasets, datasets so large that they cannot be easily managed by databases. Google’s 

MapReduce is an application that supports a simple parallel programming framework over data 

managed by GFS.  GFS/MapReduce is an example of the second type of cloud (Dean et. al., 

2004).  Hadoop is an open source implementation of GFS/MapReduce (hadoop.apache.org).  

Sector is another open source cloud that is based upon a scalable distributed file system (called 

the Sector Distributed File System) (Gu, et. al., 2009).  Sector is integrated with an application 

called Sphere that supports another simple parallel programming framework – arbitrary User 

Defined Functions (UDFs) that can be invoked over the data managed by the SDFS.   Cistrack 

manages data in part using the SDFS; the next release of Cistrack will also use Sphere UDFs to 

support high performance data pipelines. 

 

Cistrack Components 

 

CistrackDB.  The first component of Cistrack is a database called CistrackDB.  Not all Cistrack 

data is stored in CistrackDB.  Some data is left as files with the metadata managed by the 

database. This is a standard architecture used by many systems.  Unlike most other systems 

though, these files may be managed by a standard file system or by a cloud storage service.  The 

collection of archived files is called the Cistrack Archive. 

 

Cistrack includes utilities for uploading data, including collections of files, and for creating and 

annotating experiments.  The annotation page allows users to group the files together into 

experimental units and to annotate the units with metadata. Upon successful annotation of the 

metadata, the raw data files are copied into the CisTrack Archive, and relevant information is 
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moved from a staging space to the CistrackDB.  

 

The tables in CistrackDB can be divided into 5 groups. The first group contains 7 tables for 

storing gene structure information. The second group has 8 tables to support antibody design, 

preparation and validation. The experiment group contains 24 tables and supports the design, 

storage and analysis of array and Solexa experiments. The fourth group contains 5 tables for 

information on various annotations of the data. The sixth group has 6 tables to manage users, 

organizations, and data access controls. 

 

Pipelines.Cistrack contains a number of cis-regulatory data analysis pipelines for large-scale 

studies of cis-regulatory elements.  A user visits the CisTrack website to design a new 

experiment by designating test and control samples, selects the appropriate pipeline, and enters 

any required parameters.  Currently MAT (Johnson, et al., 2006) and HMMSeg (Day et. al. 

2007) for Affymetrix, CisGenome (Ji et. al. 2008), HMMSeq and MA2C (Song et. al. 2007) for 

Agilent, Bustard & Gerald (from Illumina) for extraction of Solexa raw images to call bases, and 

MACS (Zhang et. al., 2008) for Solexa eland files are supported. CisTrack generates the final 

analysis results, including .wig and .bed files, which can be viewed by third party tools such as 

the Affymetrix Integrated Genome Browser. 

 

Storage and compute cloud services.  The Cistrack Archive uses the Sector Distributed File 

System to manage large data files.  Sector has been used to manage hundreds of TB of data and 

scales by adding additional commodity computers to the system.  Cloud storage systems with 

similar designs have scaled to thousands of nodes and PB of data (Dean et. al, 2004).  The 

current version of Sector has been tested on over 100 nodes and over 100 TB of data.  Sector is 

currently being tested on a 250 node testbed containing approximately 1 PB of raw disk. 

 

The Solexa pipeline in Cistrack is currently being ported to Sphere so that cloud compute 

services can be used to improve the performance of the current pipeline, which uses an 8 way 

SMP system for parallelism.  The October release of Cistrack is expected to include this 

capability.  
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Sphere is also used for the reanalysis of data managed by Cistrack.  By reanalysis we mean the 

automated processing of specified datasets using specified pipelines.   This is often desirable if 

an improved version of a program used by the pipeline is available.  Reanalysis is not frequent 

today due to the complexity of capturing all the parameters required when automating analysis 

and to the computational resources required when reanalyzing large numbers of large datasets.  

Cistrack solves the first problem by storing the relevant parameters in CistrackDB and the 

second problem by using Sector/Sphere. 

 

Status 

CisTrack currently contains 337 experiments, 859 array/sequencing experimental units and 2198 

data files. CisTrackDB currently contains more than 3 TB of genome-wide ChIP-chip and ChIP-

seq data from Drosophila, mouse and human.   There are over 50 TB of files in the Cistrack 

Archive.   Cistrack has just completed adding support for the Solexa pipeline and the amount of 

data is expected to increase by approximately 8 TB per week.  A decision has not yet been made 

about the length of time that raw Solexa data files will be kept. 
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Abstract

Next generation sequencing is enabling new high-
precision methods for measuring gene and isoform
expression levels. In particular, a technique called
RNA-Seq, which produces tens of millions of short
reads from across a transcriptome, is rapidly gain-
ing popularity. RNA-Seq allows for a number of in-
ferences about a transcriptome, including expression
estimates and novel gene and splice site discovery. In
this review, we survey the computational methods
that have been introduced for analyzing RNA-Seq
data, with a focus on those methods that infer ex-
pression levels or gene models. We conclude with a
summary of the future challenges in this area.

Introduction

RNA-Seq is for transcriptomes what whole-genome
shotgun sequencing is for genomes. While in genome
sequencing we are primarily interested in the se-
quence of an entire genome, in RNA-Seq we are con-
cerned with both the sequences of transcripts and
their copy number in a transcriptome. The RNA-
Seq protocol consists of three main steps: (1) conver-
sion of mRNA into cDNA fragments, (2) sequencing
of the fragments with a high-throughput sequencer,
and (3) computational analysis of the sequencer reads
for transcriptome characterization [32].

There are a number of inferences that one can make
∗to whom correspondence should be addressed

about a transcriptome given RNA-Seq data. First,
given a reference genome or transcript set, one can
estimate expression levels of genes and even individ-
ual isoforms for alternatively-spliced genes. When a
reference transcript set is incomplete but a genome
sequence is available, RNA-Seq reads can be used for
discovering novel genes, exons, and splice junctions.
When neither a genome sequence nor a transcript set
is available, RNA-Seq can theoretically be used to
determine a transcriptome using sequence assembly
techniques. Finally, it can be used to determine gene
variants, such as SNPs and indels [3].

In this review, we will describe a number of compu-
tational methods that have been recently developed
for the analysis of RNA-Seq data. We begin with the
basics of how RNA-Seq reads can be used to estimate
relative expression levels. We then survey methods
that have been introduced for this task. In addi-
tion to methods that estimate expression levels, we
will also describe techniques used for the detection of
novel genes, exons, and exon junctions. To conclude,
we summarize the computational challenges that re-
main for analyzing RNA-Seq data sets.

Transcriptome measurements

The estimation of expression levels from RNA-Seq
data relies on the assumption that the number of
reads derived from an isoform is a function of its
expression level. In the ideal case, reads are uni-
formly distributed across the transcriptome and thus

1
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the probability of a read coming from isoform i is pro-
portional to νi, where νi is the fraction of nucleotides
in the transcriptome made up by isoform i. Here,
for simplicity, we are assuming that reads can start
at any position along a transcript, which can be the
case when all mRNAs have poly(A) tails. Given these
assumptions, a maximum likelihood estimator for νi

is ci/N , where ci is the number of reads derived from
isoform i and N is the total number of reads.

For comparisons of expression between isoforms,
usually one wants to know the fraction of transcripts
made up by each isoform. Letting τi denote the frac-
tion of transcripts made up by isoform i, we can easily
compute this value from νi using the relation

τi =
νi

`i

∑
j

νj

`j

−1

, (1)

where `i is the length, in nucleotides, of isoform i.
Thus, given counts of reads derived from each iso-
form and their lengths, one can estimate expression
in terms of either ν or τ .

One of the initial studies using RNA-Seq intro-
duced the notion of reads per kilobase per million
mapped reads (RPKM), for specifying expression lev-
els [22]. The measured level of isoform i, in RPKM,
is defined as 109 × ci/(Nm`i), where Nm is the to-
tal number of mappable reads. From Equation 1,
we see that the RPKM value for an isoform is pro-
portional to the maximum likelihood estimator for τ .
Unfortunately, the normalization factor for convert-
ing RPKM to a fraction of transcripts depends on the
lengths and relative expression levels of all isoforms.
Thus, to make expression levels comparable across
experiments, we suggest simply using the fraction of
transcripts measure (τ) for specifying expression lev-
els.

Expression estimation methods

The major computational steps for expression analy-
sis from RNA-Seq data are (1) base-calling from raw
sequencer output (e.g., fluorescence intensities), (2)
mapping of reads to reference sequences, and (3) es-
timating expression levels from the read mappings.

A number of methods have been developed for more
accurate base-calling from next generation sequenc-
ing technologies, in addition to those provided by the
manufacturers [9, 12, 14, 24, 33]. These methods
are typically highly technology-dependent, and thus
we will not describe them in more detail in this re-
view. Mapping reads involves the rapid alignment of
short read sequences against large reference genomes
or known transcript sets, allowing for a small number
of mismatches or indels. Many alignment tools have
been developed for this task (e.g., [16, 19, 18, 25, 27]),
which are reviewed in [30]. In this section we review
available methods for computing gene or isoform ex-
pression levels, given alignments of the reads to a
reference. The primary differences between current
expression estimation methods are in how they han-
dle reads that map to multiple locations (multireads)
and whether they estimate expression for individual
isoforms, or only for entire gene loci.

The simplest method for estimating expression lev-
els from RNA-Seq data is to keep only those reads
that map uniquely to a single gene or location along
the genome. Reads that do not map (given a maxi-
mum number of mismatches or indels), or that map to
multiple genes are discarded. The expression level (in
terms of fraction nucleotides) for gene i is then cal-
culated as νunique

i = cunique
i /cunique, where cunique

i

is the number of reads uniquely mapping to gene i
and cunique is the total number of uniquely mapping
reads. To get expression measured in terms of frac-
tion of transcripts, these values can be converted via
Equation 1, where some effective length of the gene
must be calculated (e.g., the length of the longest iso-
form, or the sum of the lengths of the exonic intervals
belonging to the gene). This method for calculating
gene expression has been used by a number of the
initial RNA-Seq studies [23, 20].

The shortcoming of using only uniquely-mapping
reads for expression estimation is that it is inaccu-
rate for genes containing relatively-repetitive regions,
which give rise to multireads. Gene repetitiveness
may be due to either low complexity segments or re-
cent gene duplication. In addition, when estimates
of expression for individual isoforms are desired, few
reads map to a single isoform, as alternate splice
forms often share a significant amount of sequence.

2
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The remaining methods that we describe attempt to
correct for these complications.

A more sophisticated method that uses only
uniquely-mapping reads attempts to correct for
gene repetitiveness by computing the “mappa-
bility” of each exon [21]. Ignoring end ef-
fects, the mappability of an exon sequence, σ, is

1
|σ|−L+1

∑|σ|−L+1
i=1 unique(σi+L−1

i ), where L is the

read length and unique(σj
i ) is 1 if the substring of

σ from position i to j is unique in the genome, and
0 otherwise. In words, the mappability is essentially
the fraction of reads potentially derived from an exon
that map uniquely. Given pre-computed mappabil-
ity values, the read count for an exon is adjusted by
dividing by the exon’s mappability.

A second class of methods that takes into account
gene repetitiveness does are called “rescue” schemes.
These methods do not discard multireads and instead
attempt to allocate fractions of them to the positions
from which they may have been derived. One such
method was introduced in [22] and implemented in
the ERANGE software package. ERANGE divides
the count of a multiread amongst the genes to which
it maps in proportion to the transcript fractions, τuni

that it first estimates from uniquely-mapping reads.
The count for each gene is calculated as:

cerange
i =

∑
n : i∈πn

τuni
i∑

j∈πn
τuni
j

where n is an index over reads and πn is the set of
gene indices to which read n maps. When calculating
gene expression levels, ERANGE takes the effective
length of a gene to be the total length of the union
of all exonic intervals belonging to the gene.

A second rescue scheme was initially introduced
for CAGE data [10] and later used for RNA-Seq data
[5, 11, 4]. Instead of taking into account all unique
reads that map to a gene, this scheme allocates a mul-
tiread according to the count of unique reads map-
ping within a fixed-length window around each pos-
sible mapping for the multiread. For RNA-Seq a typ-
ical window size is 200bp [11]. A memory and time-
efficient implementation of this method has been de-
veloped, which is shown to compare favorably with
ERANGE [11]. An advantage of the method over

ERANGE is that it does not rely on having accu-
rate gene models. However, by only using the counts
of uniquely-mapping reads within a fixed-width win-
dow, it is not using as much information as it could
when accurate gene models are available.

We have recently introduced a maximum likelihood
(ML) method for gene expression estimation that can
be interpreted as a statistically rigorous formulation
of the rescue schemes [17]. This method uses a gen-
erative probabilistic model for RNA-Seq reads and
uses an Expectation-Maximization (EM) algorithm
to find its ML parameters, which correspond to iso-
form expression levels. With this formulation, it can
be seen that the rescue method used by ERANGE is
roughly equivalent to one iteration of the EM algo-
rithm. The primary advantages of this method are
that it gives more accurate gene expression estimates
and can produce estimates for individual isoforms.
Its disadvantages include its reliance on accurate gene
and isoform models and longer computations.

The method of [13] also estimates individual iso-
form expression levels with a statistical model. Un-
like the multinomial model of [17], this method ap-
proximates the RNA-Seq read generation process by
a set of independent Poisson processes, one process
per exonic interval. Maximum likelihood isoform ex-
pression levels are estimated via coordinate-wise hill
climbing and confidence intervals are established via
importance sampling. Like [17], this method also re-
quires an accurate set of gene models.

Novel transcript detection meth-
ods

In addition to providing information about expres-
sion levels, RNA-Seq data can be used to detect novel
genes, exons, and splice junctions. A common strat-
egy for novel transcript detection has emerged from
a number of groups [4, 20, 22, 28]. First, reads are
mapped against known exons and splice junctions.
Any reads that do not map to known transcript se-
quences are aligned against the entire genome. Ge-
nomic “islands” of aligned reads in unannotated re-
gions are candidates for novel exons or genes. Reads

3
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that remain unmappable are possibly novel splice
junctions. To identify the locations of these junc-
tions, the unmapped reads can be optionally clus-
tered/assembled and then aligned to the genome us-
ing an “intron-aware” alignment tool (e.g., [15]).

Two methods have been recently introduced for
more efficiently mapping reads that span novel splice
junctions and do not require a set of known gene
annotations [7, 29]. The first, QPALMA [7], uses
the vmatch aligner [1] to map reads against a ref-
erence genome. Halves of unmappable reads are
then realigned to the genome to find seeds for poten-
tial splice junctions. A modified, splice-site-aware,
Smith–Waterman algorithm is run on 2kb windows
around seed alignments to identify the most likely
splice junction identified by a read. Parameters for
the Smith–Waterman alignment are determined us-
ing a large margin algorithm [26].

A second method, TopHat [29], first identifies “is-
lands” of mapped reads (aligned using the Bowtie
aligner [16]) along the genome as putative exons.
Unmappable reads are then stored in a k-mer in-
dexed table. All possible canonical donor and accep-
tor sites between nearby islands are identified and
the sequences spanning these possible junctions are
searched against the unmappable read table. Junc-
tions that match a significant number of reads are
then reported. The authors of TopHat tout its speed
in comparison to QPALMA, as TopHat can process
an entire mammalian RNA-Seq data set in less than
a day on a single workstation.

Future challenges

While current computational methods for RNA-Seq
are enabling researchers to probe transcriptomes in
more detail than ever before, there remain a num-
ber of challenges that need to be addressed until the
technology can reach its full potential. First, biases
in RNA-Seq data sets need to be fully explored and
corrected for by inference methods. Factors that lead
to the violation of the assumption that reads are
uniformly distributed across a transcriptome are of
particular concern, as this assumption is basis for
most expression estimation methods. For example,

depending on the exact protocol used, reads may be
biased towards the 5’ or 3’ ends of transcripts [32].
Reads may also be biased towards certain transcrip-
tome segments due to base composition (e.g., GC
content) [8]. Biases such as these will need to be
characterized and taken into account while estimat-
ing expression.

A second challenge will be to determine all pos-
sible alternative-splicing events undergone by each
gene in a genome and estimate the frequencies of
these events and the isoforms that result. Although
we have methods for estimating isoform expression
levels given known gene models [13, 17] and for iden-
tifying novel exons and splice junctions [29, 7], these
methods will need to be combined to fully charac-
terize alternative splicing within a transcriptome. In
addition, given that the number of possible isoforms
for a gene may be exponential in the number of its
exons, it is not clear how much can be inferred from
current RNA-Seq data set sizes.

A third, and likely more difficult, challenge will
be the use of RNA-Seq on species for which we do
not have a reference genome or transcript set. Most
current methods rely on reference sequence sets to
do any sort of analysis on RNA-Seq data. Promising
work in the direction of reference-free RNA-Seq has
been the transcriptome sequencing of the Glanville
fritillary butterfly with 454 reads [31] and de novo
assembly of Illumina 36bp human RNA-Seq reads [2].
When a closely-related reference genome is available,
a comparative approach to RNA-Seq analysis may
also be feasible [6].
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Extended Abstract

Introduction: Next generation (NG) sequencing (Shendure and Hanlee 2008), also
known as high throughput screening, is enabling the scientists with inspection
capabilities of samples at an unprecedented genomic level. Its usefulness in various
genotyping applications such as genome-wide detection of SNPs, methylome profiling,
mRNA expression profiling and so on are well recognized. With new technologies come
new challenges for the data analysts. In particular, statistical issues related to these novel
massive data types are plentiful and so are the opportunities of developing clever and
novel statistical techniques for the analyses of such data sets. In this paper we present a
systematic review of statistical work related to next generation sequencing.  This
extended abstract divides the existing research work into a number of subtopics each of
which will be reviewed at a greater detail in the full paper.

Data quality and reproducibility:  Marioni et al. (2008) observed that next generation
sequencing data from Illumina are highly reproducible. In an experiment measuring
expression levels and detecting the differentially expressed genes between liver and
kidney tissue samples, they found the new technology to be very reliable and overall
superior to the microarray technology.  Fu et al. (2009) arrived at a similar conclusion by
comparing the relative accuracy of transcriptome sequencing (RNA-seq) and microarrays
with protein expression data from adult human cerebellum using 2D-LC MS/MS. They
found that the next generation sequencing provided more accurate estimation of absolute
transcript levels. Wall et al. (2009) used simulation models to compare NG sequencing
with traditional capillary-based sequencing. They concluded that NG sequencing offer
great benefit in terms of coverage over capillary-based sequencing.  However they
suggested combining sequencing methodologies such as FLX and Solexa  to achieve
optimal performance at a modest cost.

A number of authors have reported problems and systematic biases with the sequence
reads obtained in next generation sequencing, however.  Dohm et al. (2008) found that
wrong base calls are often preceded by base G. Base substitution errors were significantly
disproportionate with A to C substitution error being 10 times more frequent than the C
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to G substitution. Similar artifacts were observed by Irizarry and Bravo (2009) who
reported A to T miscall to be the most common error in their calibration study. Both
studies reported that the error rates vary with the position on the read. They also question
the utility of the quality scores supplied by the manufacturers with a base call. These and
other systematic biases may lead to wrong statistical conclusions. Oshlack and Wakefield
(2009) demonstrated that when gene expression is calculated  using aggregated tag counts
for each gene in RNA-seq technology he ability to call differentially expressed genes (ort
ranking) between samples is strongly associated with the length of the transcript.

Some of the issues discussed above call for better base calling procedures than those
provided by the manufacturers. A number of papers in recent months deals with this issue
which we review next.

Base calling techniques: Most of the work in this important research area has taken
place primarily for the Illumina platform. Rougemont et al. (2008) used probabilistic  
modeling and model-based clustering to identify and code ambiguous bases and to arrive
at decisions to remove uncertain bases towards the ends of the reads. Kao et al. (2009)
developed primarily for the BayesCall Illumina platform. This is based on Bayesian
modeling and maximum a posteriori estimation. A more detailed review of their
procedure will be provided in the full paper. They found that their procedure significantly
improves the accuracy of base calling as compared to Illumina’s basecaller. Another
attempt to improve the Illumina basecaller led to Ibis (Improved base identification
system) by Kircher  (2009). They use SVM (support vector machine) type classifierset al.
into their basecalling procedure. Very recently, Irizarry and Bravo (2009) came up with
their own modeling to quantify the variability in the generation of sequence reads as
obtained from the Illumina/Solexa GA platform. Their models, which we review in
greater detail in the paper, leads to improved base calling and related quality assessment.
Schröder  (2009) proposed a novel search based algorithm using generalized suffixet al.
tree  to correct for sequencing errors in NGS. They reported error correction accuracies
of over 80% for simulated data and over 88% for real data.

Statistical methods for using sequence reads: Mapping software such as MAQ by Li et
al. (2008) are useful in assembling short sequence reads to match a reference genome and
making a final genotypic call. Bayesian calculations are used to this end. Dalevi et al.
(2008) considered the problem of matching individual short reads sampled from the
collective genome of a microbial community to protein families. Boyle et al. (2008)
developed the software package F-Seq that employs kernel smoothing in converting high-
throughput sequencing reads into continuous signals along a chromosome whose output
can be displayed directly in the UCSC Genome Browser. This type of data summary will 
be useful to identify specific sequence features, such as transcription factor binding sites
(ChIP-seq) or regions of open chromatin (DNase-seq).  Zhang  (2008) developedet al.
MACS (Model-based Analysis of ChIP-seq) that utilizes Poisson modeling and to 
capture local biases in the genome resulting in for more robust predictions of binding
sites. Jiang and Wong (2008) also used Poisson modeling in order to estimate the
expression levels of various isoforms from NG RNA sequencing. 
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Applications: We also review a number of applications of the NG sequencing
technology in a multitude of areas; each of these papers employ interesting novel
statistical methods to use the sequencing data effectively which will be reviewed in
further detail in the full paper. In a recent article, Choi  (2009) used NG ChIP-seq et al.
data together with array hybridization data towards enhancing the detection of
transcription factor binding sites. This rather interesting analysis uses a hierarchical
hidden Markov model to combine individual hidden Markov Models used with each data
types. A similar combination of data types were used by Zang et al. (2009), who looked
for spatial clusters of signals, for identification of ChIP enriched signals for histone
modification profiles. Chu whole genome sequencing to diagnoseet al. (2009) applied 
the fetal genetic disease using cell-free DNA from maternal plasma samples in the first 
trimester of pregnancy. Cokus et al. (2008) used NG sequencing to identify novel
components of the Arabidopsis for methylation. In a rather potentially high impact
application, Quon and Morris (2009) developed a statistical method to identify the
primary origin of a cancer sample via next generation sequencing. This utilizes a detail
profile of tissues of each primary origin and not a data based classifier.

R and Bioconductor packages: There are already a number of R and Bioconductor
packages/tools for analyzing NGS data.  The  (Lawrence et al., 2009) packagertracklayer
provides an interface between R and genome browsers. This package includes functions
that import/export track data and control/query external genome browser sessions/views.
The  (Kharchenko et al., 2008) provides useful tools for design and analysis ofchipseq
ChIP-seq experiments and detection of protein-binding positions with high accuracy.
These tools include functions that improve tag alignment and correct for background
signals. The  (Pages, 2009) package allows users to manipulate big stringsBiostrings 2
easily and fast by introducing new implementations and new interfaces into  Biostrings 1.

Figure. 1: The dependency among the released R/Bioconductor packages. The solid lines
represent the direct dependency and the dotted lines the indirect dependency.

 

The  package (Morgan et al., 2009) provides useful tools for analyzing high-ShortRead
throughput data produced by Solexa, Roche 454, and other sequencing technologies.
These tools include input and output, quality assessment, and downstream analysis
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functions. The  package (Pages et al., 2009) includes functions for representation,IRanges
manipulation, and analysis of large sequences and subsequences of data as well as tools
for attaching information to subsequences and segments. The  package (Pages,BSgenome
2009) provides infrastructure for accessing, analyzing, creating, or modifying data
packages containing full genome sequences of a given organism. The  packagebiomaRt
(Durinck et al., 2006) allows users to connect to and search BioMart databases and
integrates them with software in Bioconductor.  This package includes functions that
annotate identifiers with genetic information and that allow retrieval of data on genome
sequences and single nucleotide polymorphisms. Several of these packages work in
consort as shown in Figure 1.
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With the introduction and rapid adoption of next generation sequencing 

technologies, the number of completely sequenced genomes can be expected to continue 

to grow at a tremendous rate.  The information derived from the genome assembly 

however is not directly translatable to biological understanding for an organism.  For 

example, without accurate gene models, complete full genomic sequences can not be 

fully exploited for informatics or experimental applications.  This limitation for accurate 

gene models can be attenuated by high-throughput, next-generation RNA sequencing of 

an organism’s transcriptome which compliments the genomic sequence by providing the 

complete set of expressed genes under a specific set of biological conditions. 

To evaluate the utility of a transcriptomic approach for improvement of structural 

annotation, we selected the fungus L. bicolor, a mycorrhizal symbiote of the tree Populus 

tremuloides.  Fungal-plant symbiosis is a widespread process of major ecological 

importance and involves a progressive series of complex developmental steps 

accompanied by radical changes in metabolism and plant/fungal interactions with the 

environment.  Little is known about the function or regulation of the critical proteins 

associated with the free living or mutualistic forms of this organism.  We generated more 

than 24 million sequence 46 base pair reads with the Illumina “Genome Analyzer” to 

identify mRNAs associated with the free living, root exudate-treated, mycorrhizal forms 
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of the fungus.  Approximately 50% of the current L. bicolor gene models expressed in 

our data set contain intron/exon boundaries that do not map to the mRNA sequence data.  

As accurate gene models are necessary for gene function identification and synthesis of 

gene products, this indicates that additional optimization of these gene models is needed 

to fully understand the metabolism and regulatory mechanisms of this important 

mycorrhizal symbiote.  While advancement in algorithm design might incrementally 

improve the ability to identify potential genes from genomic sequence, only biological 

experimentation can validate those models. 

 For analysis, a 1,269 gene mycorrhizal transcriptome was generated from 

previously published microarray analysis of gene differentially expressed during 

mycorrhizal formation relative to the free living fungus.  The approach to utilize a 

predefined set of gene models eliminated a requirement to assemble all collected reads 

into contiguous sequences or to search all possible splice-sites within the gene models.  

The first requirement necessitates a redundancy of effort to regenerate gene models that 

already exist in a polished, if not perfected, form.  The second requirement is prohibitive 

due to the massive number of possible splice sites within a gene that need to be searched.  

Our direct approach utilizes the current set of L. bicolor models, RNA-seq data to 

confirm gene models and intron-exon boundaries. The algorithm searches for new intron-

exon splice sites only when expression evidence does not support the current gene model.  

The ultra-fast alignment program “Bowtie 0.9.9” was used to align RNA-seq reads to (1) 

L. bicolor genomic sequence and to (2) the gene models of the mycorrhizal 

transcriptome.  Errors in the gene models were identified by those regions where there 

was gene model without alignments from sets (1) or (2) and introns that were not spanned 
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by alignments from set (2).  From the 1,269 gene models examined, 778 models were not 

found to have errors.  Of the 487 gene models that contained errors, an average of 2.04 

errors per model was found.  Errors in models were corrected by identifying anchor 

sequences from up- and downstream of the errors, then searching the set of RNA-seq 

reads for contigs that bridge the anchor sequences.  Because the assembled, corrected 

gene models represent only the expressed gene sequence, it is necessary to re-align the 

gene sequences to the L. bicolor genomic sequence in order to obtain information about 

the corrected gene structure.  A slightly modified semi-global Smith-Waterman algorithm 

was used for this purpose.  In the modified algorithm, low penalties are applied to gaps at 

the beginning and end of the alignment, high penalties assigned to gaps in the genomics 

sequence, and moderate penalties to gaps in the gene sequence.  Additionally, a minimum 

of eight consecutive aligned nucleotides in the gene sequence is required to allow and 

alignment.  After annotation by this method, over 80% of mycorrhizal transcriptome gene 

models were found to have all intron/exon boundaries that map the RNA-seq data.  The 

genes with unresolved errors contain an average of 1.95 errors per gene model. 

High-throughput transcriptomic data was found to provide far greater resolution 

for gene structure definition than a previously collected data set of ESTs.  The annotation 

method used here did not achieve complete, errorless correction of the gene models.  

However, this is to be expected based on the limitations of the method the biological 

limitation associated with the small number of biological samples.  This method assumes 

that all gene models are mostly accurate and contain only a few errors each.  Although 

this is likely the case for many if not most of the gene models, a poor quality gene model 

or error in published genomic sequence will result in an unrecoverable gene.  In addition, 
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a gene must be expressed at appreciable levels in the biological sample to be correctly 

annotated.  If there is insufficient coverage of a gene model in the set of RNA-seq reads, 

there will be no way to correctly annotate that gene model.  This method also only 

identifies how genes are ultimately transcribed, not how they are translated.  Though a 

stop codon might be more easily identified, the specific start codon used for translation of 

the gene cannot be explicitly determined by this method.  However, corrected gene 

structures, and even those gene models only incompletely corrected, improve capabilities 

for the prediction of protein function and are required for in vitro approaches to 

characterize the function of these proteins. This improved annotation process can be 

extended to other important gene families and will facilitate the process to identify the 

molecular mechanisms leading to the development of the mycorrhizal symbiosis and its 

implications in improving carbon sequestration by poplar.  The methods described here 

are can also be generalized to any species or to accommodate additional biological 

conditions.  With the growing adoption of next generation sequencing techniques, it is 

likely that this method and other similar transcriptomic analysis methodologies will prove 

to be indispensable companions to current and future genomic sequencing efforts. 
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Next-generation high throughput sequencing (NGS) instruments are capable of generating 
hundreds of millions of short sequences (reads) in a single run. Accurate and efficient mapping 
of this massive amount of reads to a reference genome is the most time consuming step in many 
biological application workflows. Numerous short sequence mapping programs have been 
developed to address this challenging task, each of them offering a different trade-off between 
speed and accuracy of the mapping results [1-15]. Still, even by using the fastest tool and 
allowing loss of some accuracy, it takes about a day to map hundreds of millions of reads to a 
mammalian genome [6, 16]. Therefore, there is a need for parallelization to further speed up the 
mapping process without compromising the accuracy. In this abstract, we discuss three strategies 
for parallelizing short sequence mapping: multithreading, cluster computing and cloud 
computing. 
 
Short sequence mapping algorithms usually employ a two-step strategy. In the first step, either 
the reference genome or the read sequences are indexed and stored in the memory using a hash 
table, or a transformed array as in the case of Burrows-Wheeler Transform [6, 7, 9]. For 
simplicity in discussion, in the rest of this abstract we will assume that the reference genome is 
indexed in this step rather than the reads. Then, in the second step, reads are mapped to the 
reference genome by looking up the index structure for the matching locations. The accuracy of 
mapping depends on several factors such as sequencing and reading errors or existence of SNPs 
and repetitive regions in DNA. Computational cost grows very quickly as the desired level of 
accuracy increases. Therefore, in all sequence mapping programs accuracy is compromised in 
the following ways to limit the computation time: 
 

• Limiting the number of allowed mismatches,  
• Ignoring insertions and deletions or limiting their number and length, 
• Ignoring base quality score information, 
• Limiting the number of reported matching locations, 
• Imposing constraints on read length, 
• Ignoring information about errors particular to each sequencing technology. 

 
Each mapping program has a unique way of trading-off these factors, and even for the best 
algorithmic approach, the accuracy can be improved at the cost of increased runtime. In this 
respect, parallel processing is inevitable to keep the runtime low while achieving higher 
accuracy. In the rest of this abstract, we will discuss three strategies for parallel short sequence 
mapping. 
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Multithreading: Using multiple threads to simultaneously execute independent portions of work 
on a multi-core computer is a common technique in parallel computing. In the context of short 
sequence mapping, multithreading is utilized to parallelize the second step of the mapping 
process by assigning blocks of reads to the threads [1, 2, 4, 6, 7, 9, 11, 14]. As a slightly different 
approach, in GMAP [15], reading input and writing output are handled by two separate threads 
whereas the rest of the threads are again assigned blocks of reads for mapping. The most 
significant drawback of multithreading is the poor scalability beyond a dozen threads due to 
shared use of memory and thread synchronization. Still, multithreading is relatively easy to use 
and effective for small-scale parallelization. Up to 3.1 and 3.6 speedup with four threads was 
reported for the second step of the mapping process using Bowtie [6] and SOCS [11] programs, 
respectively. 
 
Cluster computing: A larger scale parallelization can be achieved by using a cluster of 
distributed memory computers. In a recent work, various parallelization techniques for hashing-
based short sequence mapping on distributed memory computers have been introduced [16]. 
These methods are designed to optimize the distribution of genome and read sequence data on a 
cluster of computers to enhance parallel performance. In addition to read partitioning, genome 
partitioning is also considered, hence the first step of the mapping process is also parallelized to 
achieve better speedup in certain cases. Furthermore, partitioning the genome results in reduced 
memory footprint on each compute node which cannot be achieved via multithreading. This is 
especially important for mapping programs such as SOAPv1 [17], MapReads [3] and RMAP 
[13] that build a large hash table in the first step. In Figure 1, comparison of three of the 
parallelization methods is given for varying number of reads. As demonstrated in this example, 
efficient distribution of sequence and genome data helps improving the parallel execution time. 
In [16], execution time cost models for different parallelization techniques are also given to tune 
the numbers of genome and read blocks depending on the size of the reference genome and the 
number of reads to deliver optimum performance. Up to 22 speedup was reported while mapping 
130 million Solid reads to a human reference genome on a cluster of 64 computers. 
 

 
 
Figure 1. Comparison of three parallelization methods for mapping short sequences to a 800Mbp 
genome using parallelized MapReads [3] program on a 16-node cluster. (a) Time spent on the 
first step (hashing). (b) Time spent on the second step (mapping reads). (c) Total execution time.   
 
Cloud computing: An alternative approach for parallel short sequence mapping is cloud 
computing. This idea is first introduced in CloudBurst [18] where distributed programming 
framework MapReduce is used to parallelize the RMAP [13] program. Ignoring the time to 
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transfer data files to the computing environment, the speedup obtained with this approach was 
between 10 and 12 using 24 nodes for different levels of sensitivity while mapping 7 million 
Illumina/Solexa reads to the human genome.  We have also tested on running the ELAND 
algorithm using the Amazon Elastic Computing Cloud (EC2) system using 20 nodes. For 
mapping 7.6 million Illumina read to the human genome when the chromosomes were 
distributed onto different nodes, it took 28 minutes to finish the mapping (excluding the time for 
file transferring and selecting unique matched sequences).  
 
To summarize, mapping NGS data to the reference algorithm is a highly parallelizable problem 
by nature. Currently many algorithms are available and they leave plenty of room for improving 
the mapping efficiency using parallel computing approaches. In addition, some new computing 
architectures such as the cloud computing and GPU provide low-cost alternatives to traditional 
computer clusters.  
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The W-Curve was originally developed as a graphical 
visualization technique for viewing DNA sequences. Its 
ability to render features of the DNA also makes it 
suitable for computational studies. Its main advantage in 
this area is utilizing a single-pass algorithm for 
comparing the sequences: avoiding recursion offers 
advantages for speed and in-process resources. The 
graphical technique also allows for multiple models of 
comparison to be used depending on the nucleotide patterns 
embedded in similar whole genomic sequences.

We are currently using this technique to analyze HIV-1 
sequences in some of the U.S. Army's HIV-1 Vaccine Cohort 
Studies (see http://www.hivresearch.org/ for details). The 
W-Curve approach allows us to compare large numbers of 
samples quickly. We are currently tuning the algorithm to 
accommodate quirks specific to HIV-1 so that it can be 
used to aid in diagnostic and vaccine efforts. Tracking 
the molecular evolution of the virus has been greatly 
hampered by gap associated problems that slow conventional 
string based alignments of the whole genome. The gaps 
predominate within the envelope gene of the virus.

This research describes the W-Curve algorithm itself, and 
how we have adapted it for comparison of similar HIV-1 
genomes. A heuristic method has been used to align and 
tree similar HIV-1 genomes that have similar polar 
projectedW-Curves.  Significant potential exist for 
utilizing this method in place of conventional string 
based alignment of HIV-1 genomes, such as ClustalX.  It 
is well known that a gap problem exists in similar HIV-1 
Genomes and that this slows down the processing time for 
alignment analysis of large numbers of sequenced whole 
HIV-1 Genomes, especially during real time cohort studies.

With W-Curve-based heuristic modifications to the 
alignment, it may be possible get clinically useful 
results in a short time --short enough to affect clinical 
choices for acute treatment.

Herein, we add a description of the generation process and 
comparison technique of aligning extremes of the curves to 
effectively phase-shift them past the HIV-1 whole genome 
gapproblem.  
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Initially, we examined the complete genomes of:

    HIV-U61  (9743 bases)
    HIV-BRU  (9229 bases)
    HIV-Mal  (9229 bases)
    HIV-HXB2 (9719 bases)
    HIV-M61  (9743 bases)
    HIV-MN   (9738 bases)
    HIV-H61  (9743 bases)

HIV-Mal is a recombinant of subtype A, D and K. M61 is subtype C.
The rest are subtype B.

Initially U61, H61 and M61 clustered closely together 
using both conventional string based and W-Curve based 
Euclidean alignment approaches.   With further heuristic 
refinement of gap penalty costs used in the W-Curve 
graphical alignments, we have attempted to more accurately 
reflect the conventionally accepted clustering of these 
HIV-1 subtypes as stated in the previous paragraph.  The 
authors greatly appreciate the help of Sodsai Tovanabutra 
and Eric Sanders-Buell in the sequence analysis of HIV-1 
whole genomes.

Given that the conference sample data includes Pol II
genes, we would like to include them, along with HIV
-1 Pol genes and other Pol II's we can find -- into the 
largest analysis we can perform. Our goal would be to
analyze the performance of the W-Curve code against 
other methods for building large trees for performance
and quality of the tree.
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