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ABSTRACT
The ultimate goal of CAMDA’06 competition is to integrate microarray, proteomics, and genotyping data with clinical and epidemiological data to study Chronic Fatigue Syndrome (CFS) from a system biology point of view.  Quality data is a first step to ensure the success of this challenging data fusion process. Although the QA/QC of microarray and genotyping are well established, the assessment of SELDI-TOF proteomics data is controversial. We took advantage of the rigorous experiment design in this CFS study to establish a QA/QC guideline for SEDLI-TOF studies. A preliminary evaluation suggests 63% of proteomics measurements are of good quality. The algorithm and methodology presented have been validated using SELDI-TOF but can be generalized to any proteomics technique. The algorithm we propose can be used in online or offline QA/QC of clinical proteomics to detect failed measurements and rerun them for reliable clinical decisions.  
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Algorithms, Measurement, Reliability.
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1. INTRODUCTION

1.1 Our Approach to the CAMDA’06 Competition

The ultimate goal of the CAMDA’06 competition is to combine high-throughput “-omics” measurements at mRNA, protein, and SNP levels together with clinical and epidemiological data to study Chronic Fatigue Syndrome (CFS). A well designed and orchestrated large-scale data acquisition was conducted using microarrays, SELDI-TOF proteomics, and DNA genotyping. 

The attraction of this competition is to link the data produced from complementary techniques to increase the power and the knowledge that can be obtained from a clinical investigation. The application of data fusion techniques for combining these data sets, and then explore the machine learning methods to link the measurements with disease phenotypes or to find biomarkers is both technically challenging and scientifically rewarding. One key challenge to effectively analyzing the very high dimensionality of the merged acquired dataset (where the dimensionality is approaching a quarter million) is that the dimensionality is many orders of magnitude higher than the sample size (typical phase I/II studies result in clinical measurements that involve only 20-24 patients). Before investigating dimensional reduction algorithms or outlier-resistant machine learning algorithms, our approach is to first examine the fundamental quality of the initial data acquisition and treat the data acquisition around each sample as a quality control and quality assessment (QA/QC) problem. 

QA/QC is a critical step in clinical and translational research. Much of the FDA Title 21 CFR deals with good lab and clinical practices, as the measurement of the safety and efficacy of new treatments and biomarkers requires high quality, reproducible measurements and procedures. From a Good Laboratory Practices standpoint, the ability to identify failed measurements or unacceptable variability in the accuracy or reproducibility of laboratory measurements is of paramount importance. For proteomic data to become an accepted clinical laboratory method, standardized methods for QA/QC are a must. The QA/QC of microarray profiling and DNA genotyping are relatively well studied [1]. However, the quality control of SELDI-TOF data remains controversial [2] [3]. 

The elegant design of the CAMDA’06 proteomics data acquisition gives us a unique opportunity to study the QA/QC of SELDI-TOF data. The same normal serum sample was run more than a hundred times through the data acquisition process. Under ideal conditions, these runs should result in identical measurements. We have used these data to establish a QC/QA protocol. In this paper, we refer to QC as an online decision making process, and QA as an offline assessment. 

1.2 Modeling SELDI-TOF Proteomics Data

Following Coombes [4], we define a SELDI-TOF measurement as a mixture of the following three components:

Measurement = Signal + Noise + Baseline  

Signal to noise ratio (SNR or S/N) is a simple and effective indicator of measurement quality. The crux of the problem is to disentangle the three components without going through a pipeline of models and assumptions. 

Wavelet transformation, which is also known as multiresolution decomposition, provides a different avenue for examining this problem. In proteomic measurements, the characteristics of these three components- baseline (smoothly decaying), signal (has a certain peak width), and noise (high frequency random spikes),  provides intuitive insight that these characteristics may be exposed by modeling the data at different time scales.  

In this abstract we examine and discuss the estimation of the SNR obtained by projecting raw data into the wavelet space.

1.3 Literature Review

To measure consistency and reproducibility, Tong and colleagues used Pearson correlation between a pair of spectra, and found that for proper analysis of the dataset it was critical to discard low quality spectra in a liver toxicology study [5]. Coombes and colleagues argued that apparent high correlation of the raw data can be driven by the consistency of baselines rather than protein peaks (personal communication, 2003). Thus, baseline correction, peak finding, and peak quantification have to be conducted first. Principal component analysis can then be used to visualize the outlying measurements [6]. However, these complex data analysis pipelines can be strongly affected by the level of noise in the measurements. Therefore, a simpler and more robust indicator of measurement quality is desirable. 

To address noisy measurements, Yasui and colleague at Fred Hutchison, and Coombes and colleagues at M.D. Anderson have independently explored the application of wavelet transformation in proteomics [4, 7]. Morris and Carroll [8] recently proposed a theoretical framework to model spiky data using wavelet-based functional mixed models. Wavelets can be viewed as a data projection method. There are suggestions in the literature that both statistical inference and classification model are improved by projecting the raw data into the wavelet space. 

1.4 Our Contributions

The signal-to-noise ratio is a widely accepted indicator of measurements in engineering science, but it cannot be obtained directly from raw proteomics data due to confounding effects with baseline. We examined the possibility of defining the SNR in wavelet space where in principle at least the different components of the spectra (baseline, signal, and noise) will be better separated. 

After validating our approach with a simulated data set, we established a QA/QC protocol and guidelines for both online quality control and offline assessment of SELDI-TOF data. The algorithm was implemented in an open-source package. This implementation can be readily integrated with any LIMS system at a proteomics core facility to enable rigorous quality control. 

Our work extends the key contributions of Coombes on the simulation of MALDI-TOF data, and the work of Morris on introducing UDWT wavelet analysis to proteomics [8]. 

2. METHODS

2.1 Simulating Mass Spectrometry Data

We simulated a proteomics data set of 300 spectra with 200 proteins. Different levels of noise and different baselines were added to each spectrum.  We used the algorithm by Coombes for this simulation. 

2.2 Wavelet Decomposition and Definition of SNR

We used the Maximum Overlap Discrete Wavelet Transform (MODWT) function in the Waveslim package of R statistical computing platform for non-decimated discrete wavelet transform. Comparing to the commonly used decimated discrete wavelet transform, MODWT is translation invariant, which is immune from drastic changes when the signal is shifted, a desired characteristic for our purpose. 

Briefly, MODWT can be viewed as a parsimonious projection π of the raw data (D) into a sparse wavelet coefficient (W) space using a specified mother wavelet ψ,

              W [i , j] = π (D, ψ)

Note that the wavelet coefficient is indexed by location i and scale (resolution) j. 

To measure an overall quality, we look at the detectability of the maximum peak. We define noise as the Mean Absolute Deviation (MAD) of the wavelet coefficient at a higher resolution scale of J1,


N = MAD ( W[ , J1] )

and signal as the maximum wavelet coefficient at a medium resolution level of J2,


S = max ( abs(W[ , J2]) )

Then, a global SNR can be defined as


SNR = 20 log 10 (S/N) 

The unit of SNR is decibels (dB). Note that the choice of J1 and J2 will be machine-dependent to a certain extent. These parameters can be specified by an expert with prior knowledge in proteomics. More discussion of this topic can be found in section 4.

Similarly, a local SNR can be defined for each peak. For an individual peak and its adjacent region, we partition the wavelet energy into the noise part and the signal part. The noise part is defined as
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and the signal part is defined as


[image: image2.wmf]å

=

i

J

i

W

s

2

2

])

,

[

(


so SNR can be derived the similarly as above. 

3. RESULTS

Unless otherwise indicated, all the SELDI-TOF figures in this paper are plots of data in the m/z region of 5.0K to 8.5K. For this preliminary study, we focused on the 114 normal serum samples measured on the H50 surface. The results obtained from the remaining SELDI-TOF measurements will be reported at the conference. 

3.1 Replicated Run of Normal Serum 
The rigorous design of the CFS proteomics study made it possible to assess the measurement quality of SELDI-TOF. We plotted the raw data of first six spectra from 114 runs of the same serum sample (Fig. 1). These spectra are of different measurement quality, for which we calculate the SNR in dB by comparing wavelet decompositions at different resolutions.
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Fig. 1. Six representative runs of the same serum sample. 

3.2 Decomposition of a Measurement into Signal, Noise and Baseline

We used wavelet decomposition to analyze the raw data. As shown in Fig. 2, the original data (top) can be projected into the wavelet space at different resolutions. Level 1, 5, and 9 roughly correspond with noise, signal, and baseline, respectively.
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Fig 2. SELDI-TOF spectrum and wavelet decomposition. From top to bottom: original data, wavelet coefficients at level 1 (resolution of 2), wavelet coefficients at level 5 (resolution of 32), and wavelet approximation (resolution at > 256). Note that the choice of Haar mother wavelet changed the shape of the original peak. 

3.3 Evaluation on Simulated Data

To validate our algorithm, we simulated mass spectra spiked in with different levels of noise and baseline while keeping the signal at the same level. Pearson rank correlation was used to assess the concordance of the true SNR and calculated SNR. Due to space considerations, we have omitted this discussion.

3.4 QA/QC Result of CAMDA’06 Data

From the 114 spectra, we selected representative with SNR > 20 dB and plotted them in Figure 3. These spectra show cleaner signal with higher reproducibility. 
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Fig. 3. High quality measurements with S/N > 20 dB.

In contrast, we selected medium quality spectra (Fig. 4) and low quality ones (Fig. 5), where partial or no useful information is apparent. These numerical assessments are in agreement with visual assessment by an operator. 
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Fig 4. Representative spectra of medium quality (S/N < 20 dB but > 5 dB)
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Fig 5. Low quality measurements with S/N < 5 dB.

4. DISCUSSION

The definition of signal, noise, and baseline is a continuum strongly based on the domain knowledge. We utilized wavelet transformation to incorporate expert knowledge into this decision making process by selecting appropriate scale J1 and J2. The SNR value is not critically affected by slightly different choice of J1 and J2, which can reflect the bias between proteomics experts.

5. CONCLUSIONS

5.1 SOP cannot Replace QA/QC

QA/QC protocols and Standard Operating Procedures (SOPs) define methodologies which ensure high quality data. Both are required. Even if a rigorous SOP is implemented, low quality measurements are inevitable for complex procedures like SELDI-TOF proteomics. A QA/QC protocol should be in place to detect and rerun failed samples. 

5.2 Denoising cannot Replace QA/QC

Preprocessing algorithms such as denoising and normalization will remove some systematic bias of the measurements, but it cannot ‘rescue’ low quality measurements. For example, it is not feasible to extract any clinically useful knowledge based on the noisy measurement in Figure 6 (bottom). Even though the medium quality spectra (Fig. 6 middle) carry some relevant information and can be improved after denoising, some low abundance proteins (peaks 1~4 in Fig. 6 top) remain ‘in the noise’ and are very hard to recover. These low abundance proteins usually carry clinically relevant information. Thus, it is advisable to rerun these samples after QA/QC assessment.
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Fig 6. SELDI-TOF spectra of the same clinical sample with low, medium and low measurement qualities. 

5.3 Quality Control Guidelines

5.3.1 QC of a Single Spectrum

Based on the SNR value, a QA/QC decision can be made simply by setting an acceptable SNR threshold for a given proteomics platform. Depending on the application, a rejection threshold is typically set well above research-acceptable values, for instance 20dB (Table 1).

Table 1. Guideline of QC/QA for a single spectrum

	S/N 
	Decision

	<5 dB
	Low quality, has to rerun

	5 ~10 dB
	Medium quality, may need rerun

	> 10 dB
	Good quality

	> 20 dB
	A possible GLP threshold, below which any run would be repeated


5.3.2 QC of a Batch of Spectra

For a collection of spectra in the same batch, the distribution of SNR can be plotted. Outliers in the SNR distribution can be an indication of initiating a quality investigation. 

5.3.3 QC of a Data Cohort  

For a combined data set with many batches, we need to assess if data in different batches have the same quality. Moreover, the SNR should not be confounded with other factors of biological interest, such as sex, gender, or disease phenotype. An analysis of variance (ANOVA) of the SNR can be used to identify these trends.

5.4 Implication on the CAMDA’06 Challenge

For the subset of 114 serum sample we inspected, 72 (63%) of them are of good quality. This may be an indication of the overall measurement failure rate with current instrumentation in an environment with rigorous SOP. We hypothesize that removing low quality spectra may not leave enough quality samples to construct predictive models. We will test this hypothesis in the coming months before the conference. 

6. ONGOING WORK

Based on the highly replicated normal serum data, we have established a QA/QC procedure for the rejection of spectra. We are in the process of evaluating all the SELDI-TOF measurements using this guideline. The impact of QA/QC on the higher level modeling of the disease phenotype will be reported at the conference. 
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