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ABSTRACT

Chronic fatigue syndrome (CFS) is a heterogeneous disease whose diagnosis is a challenge. We explored the use of surface enhanced laser desorption and ionization-time of flight (SELDI-TOF) to identify biomarkers for CFS diagnosis. To do so, proteomes in sera from 31 CFS/CFS-like patients and 32 healthy people were profiled by anion-exchange fractionation and three different ProteinChip array surfaces, under high and low laser energy. A panel of standard pre-processing methods for SELDI proteomic data analysis was applied to process the data sets. We identified biomarkers and built a kernel-based k-nearest-neighbour (KNN) classifier in each combination of experimental conditions. The prediction accuracy based on 10-fold cross-validation is approximately between 50%-80% for all the 32 combinations of experimental protocol. Using 14 biomarkers obtained from the combined experimental condition of low laser energy, fraction 6 and H50 ProteinChip array surface, the resulting kernel-based KNN classifier achieved the highest prediction accuracy 79.4%. Our findings show that the CFS-specific proteomic signatures may be useful for the detection and diagnosis of CFS.
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1. INTRODUCTION

Chronic fatigue syndrome (CFS) is a complex, multifactorial illness [1]. Since its etiology and pathophysiology remain unclear, the diagnosis of CFS is a challenge to clinicians and researchers in the field. The common diagnosis of CFS is based on a characteristic symptom complex in the absence of other medical or psychiatric conditions with similar clinical characteristics [2].  Some recent studies have explored the utility 
of gene expression profiles [3] and the integration of gene expression results with epidemiologic and  clinical data [4] to evaluate the differences between CFS subjects and healthy controls. Some interesting genes have been found to be associated with CFS [3-4] and their expression profiles show that CFS is a heterogeneous disease. 
Recent advances in mass spectrometry (MS), especially surface enhanced laser desorption and ionization-time of flight (SELDI-TOF), provide an efficient technology for identifying protein markers to differentiate “diseased” individuals from healthy controls. For example, pancreatic cancer was successfully diagnosed using this technology [5]. However, the potential of this SELDI-TOF MS technology for identifying patients with such a heterogeneous and difficult to define syndrome as CFS is unknown. We hypothesize that SELDI-TOF MS can identify changes in the serum proteome that can be used as biomarkers for CFS.
The objectives of this pilot study are two-fold: the first is to identify biomarkers for CFS and CFS-like diseases using SELDI-TOF MS technology, and to evaluate whether SELDI serum profiling can be used to accurately distinguish patients with CFS (or CFS-like) from healthy controls; the second is to determine the best experimental protocol for further large sample studies by choosing the best fraction/ProteinChip /energy combinations.  

2. MATERIALS AND METHODS

2.1 CFS and CFS-like patients, and normal control samples
There are a total of 63 sera samples, 31 from the CFS and CFS-like patient groups, and the remaining 32 samples from the healthy control group. The CFS-like patient group includes 3 patients with insufficient symptoms or fatigue (ISF) for the full CFS diagnosis (CFS-ISF), 8 patients with major depressive disorder with melancholic features (CFS-MDDm) and one patient with ISF-MDDm). All these samples were analyzed using SELDI-TOF. Using an anion exchange fractionation procedure, each serum was fractioned into six different fractions, containing proteins separated roughly on the basis of pI. Each fraction was then applied to three biologically distinct ProteinChip array surfaces: reversed phase (H50), metal affinity capture (IMAC30) and weak cation exchange (CM10). A low stringency wash condition was used for the three ProteinChips. For the CM10 ProteinChip, a high stringency wash condition was also performed. These procedures were run in duplicate. Since the number of sera samples in fraction 1 was different from other fractions, and since labels for fraction 2 are not consistent with other fractions, we did not analyze the data obtained in these two fractions. High laser energy and low laser energy were applied to all these procedures. For the high laser energy, there are 30505 m/z values, ranging from 0.05 to 99989 Da. For the low laser energy, there are 21577 m/z values, varying from 0.05 to 49938 Da. Low laser energy allows peaks in the low mass range to be well-visualized and high laser energy improves visualization of peaks in the high mass range. Since it is known that there is a noisy m/z region near the lower limit where the machine can not record stably, the parts of the spectrum with m/z values < 2000 in the high laser energy condition and with m/z values less than 100 in the low laser energy was not used for analysis.
2.2 Pre-processing of the Mass Spectra

The raw SELDI mass spectra were pre-processed prior to subsequent analysis of proteomic expression profiles; this includes baseline subtraction, total ion current normalization, peak identification and alignment, quantification of aligned peaks and merging replicate samples.

Baseline subtraction: The data set provided by the organizers of The Sixth International Conference for the Critical Assessment of Microarray Data Analysis (CAMDA 2006) had previously undergone baseline subtraction (see Figure 1.).
[image: image1.emf]0   e+00 2   e+04 4   e+04 6   e+04 8   e+04 1   e+05

-10

0

10

20

30

40

m/z

Intensity


Figure 1 The spectrum (1080055150 A-1) after baseline correction. The spectrum is for the condition: H50, fraction 4 and high energy.
Total ion normalization: For SELDI-TOF data, where each protein concentration is measured by the Area under the Curve (AUC) of its peak, a global intensity normalization can be applied by simply multiplying by a constant factor, which is equal to the median of the total intensities among all spectra divided by the total intensity of the current spectrum (see PROcess package in (www.bioconductor.org). 
Peak identification: Although not each peak intensity at an m/z value is related to a protein or even a part of a protein, the height of peaks at certain m/z values indicates the presence and the approximate amount of corresponding proteins or peptides in the sample. We used the algorithm implemented in the caMassClass package developed by the National Cancer Institute (http://ncicb.nci.nih.gov/download) to identify peaks. The algorithm can be summarized as follows: given a spectrum and a sequence of its intensities:
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(i=1,…,n), two windows are defined: the small window includes a m/z values to the right and left of i, and the large window has A m/z values to the right and left of i.  The point
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, is larger than a chosen constant Zth; and (3) the signal to noise ratio (z-score) is larger than the chosen constant SNR, where  
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.   (mad is median absolute deviation). We set Zth=0.7, SNR=1.6, a =5 and A=40.
Peak alignment: It is widely known that there may be a slight shift in the m/z values of a peak (approximately 0.1-0.3% of the m/z value of that peak) across the samples in a study [7]. The inconsistent m/z values across samples for the same peak would be greatly misleading if not aligned prior to analysis. We used a recently developed method implemented in the PROcess package (www.bioconductor.org) to adjust the shift. The method first treats each peak location as an interval censored observation, m/z * (1-0.2%,1+0.2%), then maximum likelihood estimates of the common peak locations, conditional on the observed intervals, are estimated by the method of Gentleman and Geyer [8].
After a set of aligned common peaks across spectra were obtained, we quantified the intensity of each of the aligned peak location of individual spectra by the maximum of the intensities in the m/z interval: m/z * (1-0.2%,1+0.2%). The intensities of the two replicate for each sample were then averaged. 
2.3 Selection of Differentially Expressed Biomarkers with Discriminating Power

Since the number of CFS-like patients is small, we treated CFS and CFS-like patients as a single disease group. We used the standard t-test to select differentially expressed biomarkers which differentiate CFS/CFS-like patients from healthy controls,  allowing for unequal variances of these two groups. The p-values for all aligned peaks were sorted from smallest to largest, so that on a univariate basis, the peaks (biomarkers) ranked at the top have larger discriminating power than those ranked at the bottom.
2.4 Kernel-based K-nearest-neighbour classifier
We built our CFS prediction models using a kernel-based k- nearest-neighbour (KNN) method. The simplest implementation of the KNN algorithm searches for the k nearest neighbours in a defined feature space, and then assigns a class membership according to a simple majority vote over the labels of the nearest neighbours. Usually, simple Euclidean distance is used to determine the neighbours. 
Many extensions of the standard KNN algorithm have been proposed. One of these is a kernel-based method [9], which uses a kernel function to measure the similarities between a new observation and its nearest neighbours in the learning set. The similarity is then used as a weight when voting the new observation to a given class membership. In contrast, in the standard KNN, the influence of each neighbour on the prediction is considered to be the same. This extension puts more weight on neighbours close to the new observation than on points that are far away from the new observation. The algorithm can be described as follows:
Assume there is a learning set 
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, and a new observation v. The objective is to build a kernel-based KNN classifier to predict the class membership y for v.  To do this, first we searched for the k+1 nearest neighbours to v according to a distance function
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[10]. Therefore, the class membership prediction of y for v is based on a weighted majority ruling among the k nearest neighbours: 
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, where r=1 is the CFS/CFS-like group and r=0 is the NON-CFS disease group. A prediction confidence score, indicating the probability or likelihood of the prediction, is calculated based on the ratio of the total weight for a given class, among the nearest neighbours, to the total weight of the k nearest neighbours: 
[image: image18.wmf]å

å

=

=

=

k

i

i

i

k

i

i

w

r

y

I

w

i

i

v

y

v

r

y

p

)

(

)

(

)

(

)

(

))

,

(

,

|

(

)

. An important  advantage of the kernel-based KNN algorithm is that k is implicitly adjusted by the weights. If k is chosen too large, it may make little difference to the predictions since only a small number of neighbours with large weights will dominates the other neighbours. 
We evaluated our classifiers using 10-fold cross-validation [10]. We randomly divided the learning dataset into 10 groups (
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was built using nine of the groups, leaving out group 
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. Receiver-Operator-Characteristic (ROC) curves were then used to depict the patterns of sensitivity and specificity observed when the performance of the classifier was evaluated at several different thresholds for the confidence scores. Since the prediction confidence (probability) from the kernel-based KNN algorithm is between 0 and 1, we created 100 equally-spaced thresholds of the prediction confidence when calculating the ROC curves. For each of the 100 thresholds, we calculated specificity, sensitivity and the area under the curve (AUC).
3. RESULTS

3.1 Discovery of protein biomarkers
For each of the 32 experimental conditions (4 chip types by 4 fractions and two energy levels), we calculated p-values using t-tests for all the aligned peaks (biomarkers). The differentially expressed biomarkers were defined as those that had p-values smaller than 0.05 when comparing CFS/CFS-like patients and controls. Tables 1 and 2 show the number of differentially expressed biomarkers identified in 4 of the 16 experimental 
Table 1 The number of biomarkers identified at high laser energy for each condition, and the number of significant biomarkers (p<0.05) 
	Condition (Fraction/Chip)*
	# of biomarkers 
	# of differentially expressed biomarkers (p<0.05)

	H50-F4
	235
	40

	IMAC-F5
	613
	10

	CM10 High Stringency-F4
	315
	29

	CM10 High Stringency-F5
	1220
	52

	CM10 High Stringency-F6
	1053
	24


* Only conditions with at least 2 differentially expressed biomarkers (p<=0.05) are included in the table.
Table 2 The number of biomarkers identified at low laser energy for each condition, and the number of significant biomarkers (p<0.05)

	Condition (Fraction/Chip)*
	# of biomarkers 
	# of differentially expressed biomarkers (p<0.05)

	H50-F4
	351
	9

	H50-F6
	299
	9

	CM10 High Stringency-F3
	417
	20

	CM10 High Stringency-F4
	409
	4

	CM10 High Stringency-F5
	809
	12

	CM10 High Stringency-F6
	706
	40

	CM10 Low Stringency-F3
	328
	5

	CM10 Low Stringency-F4
	376
	3

	CM10 Low Stringency-F5
	370
	12

	IMAC-F3
	391
	9

	IMAC-F4
	418
	7

	IMAC-F5
	449
	36

	IMAC-F6
	341
	4


* Only conditions with at least 2 differentially expressed biomarkers (p<=0.05) are listed

conditions for high laser energy, and 13 of the 16 experimental conditions at low laser energy. As we can see, many more experimental combinations identified differentially expressed biomarkers at low laser energy than at high laser energy.  
3.2 Serum diagnosis models for CFS
To develop a prediction model for CFS using the biomarkers identified in the previous step, we used the kernel-based KNN  method with a Gaussian kernel and K=3 to build a prediction model for each condition. (laser energy/chip/fraction). Table 3 shows predictive performance after 10-fold cross-validation for ten of the conditions, with accuracy 60% or greater. As can be seen, the model built on fraction 6 using the H50 ProteinChip array surface and low laser energy shows the best prediction result, with accuracy of 79.4% and a corresponding area under the curve (AUC) for the ROC of 77.6%. It is worth emphasizing that our cross-validation included the t-test selection stage.  Specifically, in each of the ten cross-validation datasets we calculated t-statistics for each identified biomarker (second column of tables 1 and 2) using the training data, and then selected a fixed number of biomarkers (fourth column of Table 3) from the top-ranked t-statistic scores.  Hence, different biomarkers can be selected in each cross-validation analysis.  For example, we selected 8 biomarkers in each of the ten cross-validation in the combination with best prediction accuracy (Low_Laser_Energy-H50-F6), but we got 14 different biomarkers in the whole cross-validation procedure (Table 4). 
Table 3 Performance characteristics of SELDI biomarkers in the diagnosis of CFS in each condition
	Condition
	Accuracy (%)*
	AUC (%)
	# of biomarkers**

	High Laser Energy-H50-F4
	66.7
	64.6
	16

	High_Laser_Energy_CM10 High Stringency-F6
	68.3
	70.6
	3

	Low_Laser_Energy-H50-F6
	79.4
	77.6
	8

	Low_Laser_Energy-H50-F4
	61.9
	58.1
	15

	Low_Laser_Energy_

IMAC_F5
	61.9
	62.3
	3

	Low_Laser_Energy _CM10 Low Stringency-F3
	60.3
	67.9
	2

	Low_Laser_Energy _CM10 Low Stringency-F4
	61.9
	60.9
	4

	Low_Laser_Energy _CM10 Low Stringency-F5
	60.3
	59.6
	15

	Low_Laser_Energy _CM10 High Stringency-F3
	69.8
	76.1
	13

	Low_Laser_Energy _CM10 High Stringency-F6
	61.9
	61.1
	5


* Only conditions with larger than 60% accuracy are listed

**The number of biomarkers selected in each of the 10 cross-validations 
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Figure 2 ROC curve for the performance of SELDI derived biomarkers from low laser energy H50 fraction 6
Table 4 shows the p-values from the t-tests for the biomarkers selected consistently in this best prediction model (Condition: Low_Laser_Energy-H50-F6), and it also reports the number of times each biomarker was selected for inclusion in the 10 cross-validation models.  Not surprisingly, all the biomarkers with significant differences between cases and controls (Table 2) were often selected in the prediction model.  For example, 
Table 4 The SELDI biomarkers used in building the diagnosis model for CFS in the conditions: Low_Laser_Energy-H50-F6
	m/z
	p-value (t-test)*
	Times**

	500.4684134
	0.002301636
	10

	526.3221611
	0.005358258
	10

	500.9326675
	0.011475143
	10

	7784.425103
	0.013897058
	10

	501.8618258
	0.018222865
	10

	502.7918491
	0.02142476
	8

	527.5130904
	0.023476904
	6

	499.5405451
	0.026054199
	8

	526.7982502
	0.042868796
	3

	501.3971417
	0.055007619
	1

	791.5120389
	0.062007361
	1

	6915.027324
	0.101860914
	1

	4276.036433
	0.10220098
	1

	15483.83627
	0.305629302
	1


* The reported p-value is based on all 63 samples rather than the training samples in each of the 10-fold cross-validation.
** The number of times the biomarker was picked in 10 CV.
for the combination, Low_Laser_Energy-H50-F6, we identified 9 statistically significant biomarkers out of 299 biomarkers. Five of the nine biomarkers were identified 10 times in the 10-fold cross-validation procedure, while other four were detected at least 3 times in the 10-fold cross-validation procedure.  This provides another assurance that these are important biomarkers of CFS. Based on this analysis, it appears that the following three m/z values ranges seem to be interesting: 499-503, 526-528 and 7784-7785, since the nine differentially expressed biomarkers are located in these regions. Moreover, these nine biomarkers gave rise to the best prediction accuracy of our models.
4.  CONCLUSION
In conclusion, we have investigated the predictive capabilities of the SELDI-TOF technology for comprehensive profiling of serum proteomes and have identified CFS-specific proteomic signatures that differentiate the CFS/CFS-like patient group and the control group. Application of our kernel-based KNN diagnosis model built on only 14 selected biomarkers in the combination low laser energy, H50 chip type and fraction F6 reached 79.4% prediction accuracy. Although there were a total of 48 experimental conditions considered in this pilot study (of which we analyzed 32 in detail), biomarkers identified from most of these combinations did not show good prediction accuracy. Our findings suggest that a potential optimal experimental protocol for further large sample studies may be obtained by focusing on fraction 6 using the H50 ProteinChip array surface under low laser energy. 
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