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 We have analyzed the CAMDA 2006 data using a novel “classification model ensemble mining” 
(CMEM) methodology, in which genetic programming and heuristic search are applied to learn ensembles 
of classification rules that distinguish CFS from Control (one set of classifiers based on microarray data, 
and one based on SNP data), and these ensembles are then statistically analyzed to identify genes, gene 
categories, and combinations thereof that appear to play important roles in characterizing CFS.  The results 
of this analysis include potential microarray and SNP based diagnostic rules for CFS, and also lists of 
SNP’s, genes and gene categories that are potentially significant biomarkers for CFS (and are different 
from those found via simple statistical category-differentiation analysis).  Overall, our results appear 
compatible with a system-theoretic view of CFS which views the disorder as a complex pattern of activity 
across the organism including interlinked disturbances in neural and endocrine systems. 
 
Analysis of Microarray Data 

 
The first step in applying CMEM to microarray data is to transform the microarray data profiles 

corresponding to individuals into numerical “feature vectors.”  To produce a feature vector from a 
microarray data profile, the data is first log-transformed and z-normalized, and then the microarray gene 
expression vector associated with an individual is extended into an “enhanced feature vector.”   The entries 
of an enhanced feature vector are either (transformed, normalized) gene expression values, or else values 
derived from these, each one corresponding to the average (transformed, normalized) expression of all the 
genes measured in an individual that belong to a given Gene Ontology or Protein Information Resource 
category. 

Given a set of feature vectors divided into two categories, CMEM begins by using genetic 
programming [1] to learn an ensemble of classification models, each of which distinguishes the two 
categories using some learned rule.  Given an ensemble of classification models, a calculation is done to 
determine, for each feature, the percentage of models that use that feature.  (In the algorithm as currently 
implemented, we simply assume that all features in a given GP-learned model are equally important to that 
model.) This gives us a list of the features that are most useful for distinguishing the two categories – since 
they are frequently used as tools for building accurate classification models.  The ordered list of most 
useful features may be subjected to qualitative biological relevance analysis: these are potential biomarkers, 
and potential components of combinational biomarkers. 

The final step in CMEM is what we call MUTIC, or Model Utilization-based Clustering, which is 
a method for grouping together collections of features possessing interrelationships relevant to the 
categorization problem at hand.  Toward that end, we associate each feature with a “utilization vector.”  
The i’th entry of the utilization vector for the feature f is 1 or 0 depending on whether or not the feature f is 
used in the i’th model.   The utilization vectors are then clustered, using a clustering algorithm called 
Omniclust, which is a variation on standard hierarchical clustering, with the cosine measure as the 
underlying vector similarity metric.   These clusters may contain subsets that are combinational biomarkers. 

 



div Figure 1 shows an example classification rule produced via 
applying the CMEM methodology to the CAMDA 2006 microarray data 
(CFS versus NF=Non-fatigued).  The Figure shows the rule in tree form, 
which is the form used internally by the GP learning algorithm.  To 
evaluate the displayed rule on a given individual’s gene expression profile, 
first the non-constant leaf nodes are replaced with that individual’s gene 
expression values: e.g. NM_008149 is replaced with the expression value 
of that gene in the individual, GO:0019984 is replaced with the average 
expression value of genes in that GO category in the individual; 
FAM0008332 is replaced by the average expression value of genes coding 
for proteins in that PIR protein family.  Then the arithmetic operations are 
performed, proceeding from the leaf nodes up.   For instance, the final 7 
lines of the rule are equivalent to the algebraic expression (AK027884 - 
L39833) - (AB025009 - D86640).  This rule contains only arithmetic 
operators so it is equivalent to a rational function; one may also find high-
quality rules involving logical operators and inequalities.  Table 1 shows 
the confusion matrix corresponding to the 10x10 cross-validated 
classification run that produced that model (among others).  
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    const 0.067531 
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    const 0.002924 
    const 0.023923 
  mul 
   mul 
    input BC036349 
    input AB037886 
   sub 
    const 0.480216 
    input AK023090 
 sum 
  sum 
   sum 
    input BC033933 
    input AF273052 

Table 2 lists the features that occurred most often in the top 100 
classification rules found.  For each feature, it also shows the rank of that 
feature that obtains if one lists features ordered by their differentiation 
between CFS and Control.  Full interpretation of the feature list in Table 2 
requires a more in-depth analysis, but some aspects are fairly 
straightforward.  For example, the potential relevance of the autoimmune 
regulator AB006684 is clear; and  the top feature SARS2 is well-known to 
relate to caspase 3 [2], which is part of the neural apoptosis process [3], 
which has been implicated in CFS [5].  

   mul 
    input NM_031954 
    input BC001078 
  sub 

Finally, Table 3 shows one of the top-quality clusters obtained via 
MUTIC.  Note the presence of genes related to glucocorticoid response and 
neurotransmitter metabolism, a relationship perhaps meriting future 
investigation, particularly in light of the prominent role of glucocorticoid 
response in the SNP results to be described below. 

Figure 1.  Example Microarray 
Classification Rule 
 

   sub 
    input AK027884 
    input L39833 
   sub 
    input AB025009 
    input D86640 

 

 
Computed Expected 

False True 
False 19 16 
True 10 30 

Table 1.  Confusion Matrix for Classifying CFS vs. Control Using Microarray Data 
 
  
Feature Description Utility Variance Rank 
BC001020 SARS2 - seryl-tRNA synthetase 2  0.901 11 
AF365931 ZIM3 - zinc finger, imprinted 3  0.9 12 
FAM0002474 Component genes: 0.899 33 
 NM_001835: Homo sapiens clathrin, heavy polypeptide-like 1 

(CLTCL1), transcript variant 1, mRNA. 
  

AB004064 TMEFF2 - transmembrane protein with EGF-like and two follistatin-
like domains 2  

0.898 22 

AB006684 AIRE - autoimmune regulator (autoimmune polyendocrinopathy 
candidiasis ectodermal dystrophy)  

0.898 34 

BC038855 TMEM16K - transmembrane protein 16K  0.896 2 
BC036207 C10orf48 - chromosome 10 open reading frame 48  0.896 8 
AB020710 EHBP1 - EH domain binding protein 1  0.895 1 
AF484964 SH2D1B - SH2 domain containing 1B  0.895 9 



Table 2.  Top 10 Features Based on Classification Model Utilization 
The Utility column shows the percentage of classification models in the final population of a GP run 

that utilize the indicated feature. 
 
 

Feature Description 
AK090939      WDR49 - WD repeat domain 49 
GO:0002009       morphogenesis of an epithelium 
AK097310     MYOC - myocilin, trabecular meshwork inducible 

glucocorticoid response 
NM_004140       Homo sapiens lethal giant larvae homolog 1 (Drosophila) 

(LLGL1), mRNA. 
SF001149   Thrombin 
GO:0006903  vesicle targeting 
NM_152291  Homo sapiens mucin 7, salivary (MUC7), mRNA 
XM_032542     Homo sapiens FLJ41352 protein (FLJ41352), mRNA. 
GO:0006875       metal ion homeostasis 
NM_001132        Homo sapiens AFG3 ATPase family gene 3-like 1 

(yeast) (AFG3L1),mRNA. 
SF002108          fragile X mental retardation syndrome protein 
GO:0042133       neurotransmitter metabolism 
NM_018560        Homo sapiens WW domain containing oxidoreductase 

(WWOX), transcript variant 2, mRNA. 
Table 3.  Example MUTIC cluster with high cluster quality 

This cluster also contained three features without descriptions in our database:  
XM_114099, BC010433, NM_014158 

 
 
Analysis of SNP Data 
 
 Analysis of the CAMDA SNP data using evolutionary learning and enumerative search algorithms 
resulted in the discovery of a number of SNP-combinations which give significant classification accuracy 
for distinguishing CFS from Control.   The CMEM approach was then used to mine the discovered 
classification rules to identify “important SNPs.”  For these experiments, we labeled all pure CFS 
individuals as Case and all NF and ISF individuals as Control.  Table 4 shows the best SNP classifiers 
found, together with their classification accuracies measured across the whole dataset.   

The classifiers we used here are called “pattern-strength classifiers”; each one is simply a set of 
SNP’s plus a threshold.  Such a classifier is used to classify an individual as Case or Control based on the 
following approach.  For a given individual being evaluated by a particular rule, a “sum of SNPs” is 
computed via the rule: if the individual has a SNP s (present in the SNP list of the rule) in homozygosis, 
then the value 2 is summed for s; is s is present in heterozygosis, then 1 is summed; finally, if s is 
undetermined for that individual, then 0 is summed. After this sum is computed for all SNPs in the rule list, 
the value is compared with the rule threshold: if it is greather than the threshold, the individual is classified 
as CFS, otherwise Control.  

We used two approaches to find pattern-strength classifiers for the CAMDA SNP data: genetic 
algorithms (GA) [5] and enumerative search.  In the GA approach, the GA was executed 10 times in order 
to create an ensemble of 10 pattern-strength classifiers (each one being the fittest from the final population 
of one run), and this ensemble was used as a single classifier by direct voting. This ensemble-building 
classification process was executed 100 times using 3x3 cross-validation. The best execution achieved 
78.5% out-of-sample cross-validated accuracy. 

The enumerative search approach, on the other hand, yielded individual pattern-strength classifiers 
with significant accuracy.  We simply searched through all possible pattern-classifiers involving 4 or fewer 
SNP’s and selected the ones with highest classification accuracy.  The best classifiers found in this 
approach are shown in Table 4.  The statistical significance of these enumerative search results was 
established via permutation analysis: enumerative search of shuffled versions of the dataset did not yield 
pattern-classifiers with comparably high accuracy. 



  
Accuracy Confusion 

Matrix 
Threshold SNPs 

45 13 
12 31 

7 TPH2_15836061 NR3C1_1046360 5HTT_7911143 
CRHR2_11823513 

75.2% 

45 13 
12 31 

7 TPH2_1843075 NR3C1_1046360 5HTT_7911143 CRHR2_11823513 

Table 4.  Top-Accuracy SNP-Based Classifiers 
 
 Table 5 shows the top 5 SNP’s used in all pattern-strength classifiers found for CFS vs. Control, 
and Table 6 shows the top 5 genes (the genes whose SNP’s have the most classification model usage, all 
total). 
 

SNP Frequency Frequency (%) 
POMC_3227244 547 18.2 
MAOB_15763403 412 13.7 
MAOB_15959461 261 8.7 
NR3C1_1046353 249 8.3 
TH_243542 225 7.5 

Table 5.  Most Useful SNP’s 
 

Gene Short Description Frequency Frequency (%) 
NR3C1 glucocorticoid receptor 977 32.6 
MAOB monoamine oxidase B 884 29.5 
TPH2 tryptophan hydroxylase 2 705 23.5 
POMC proopiomelanocortin 547 18.2 
COMT catechol-O-methyltransferase 530 17.7 

Table 6.  Most Useful Genes for SNP-Based Classification 
 
Discussion 
 
 Chronic Fatigue Syndrome is a complex disorder and the data we have analyzed is almost surely 
not adequate for achieving a full understanding of its causes and dynamics, nor for arriving at completely 
accurate diagnostics.  However, the results we have obtained provide some indications of genes, mutations 
and categories and combinations thereof that may be relevant to CFS and may potentially serve as CFS 
biomarkers.   

We have found statistically significant classification rules predicting CFS vs. Control, separately 
based on both microarray and SNP data.  Neither of these classification rules achieves the 90%+ accuracy 
that one often finds when learning classification rules for diseases such as cancer, but this is unsurprising 
given the greater complexity of CFS and the uncertainties involved with CFS case definition.   
 Analysis of microarray data reveals that some genes related to brain and immune function are 
important for distinguishing CFS from Control, which is not surprising in light of the diverse evidence 
pointing to a central role for neurological dysfunction in CFS.   Analysis of SNP data reveals a number of 
important endocrine-related genes, mutations and mutation combinations.  MUTIC clustering of the 
microarray data reveals clusters combining neural and endocrine related genes; in particular, glucocorticoid 
receptor related genes occur both in the MUTIC microarray results and the SNP results.  Taken together, 
these results support the general concept that CFS may be a systemic disorder involving problems with 
both the brain and the endocrine system, and complex feedback dynamics between these two organs.  

We suspect that ultimately the results we obtained from analyzing the CAMDA CFS data may be 
found compatible with a system-theoretic view of CFS as schematically depicted in Figure 2. 
 



 
 

Figure 2.  Hypothesis: CFS as a Systemic Disorder 
 
Figure 2 integrates our present data analysis results with results from the literature that suggest a central 
role for the interoceptive process in CFS [6,7], as well as results recently obtained during collaborative 
research with Elizabeth Mahoney, Brian Gurbaxani and James Jones via analyzing other CFS-related 
clinical data not contained in the CAMDA dataset, indicating that an appropriately-defined concept of 
“allostatic load” can be used to help distinguish CFS from Control [8,9].  In this hypothetical interpretation, 
the distinctively CFS-relevant features we have observed in endocrine-related SNP’s and neural and 
immune related genes reflect disturbances in particular parts of the body system which are part of the 
overall systemic disorder.   

Potentially, future research may reveal that some of the neural and endocrine genes, SNPs and 
combinations found in this study may serve as biomarkers for CFS or for particular sub-syndromes of CFS.  
Among others, the glucocorticoid receptor related genes, and also SARS2 and AIRE, would seem to be 
candidates worth exploring. 
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