Detecting Pathological Pathways of the Chronic Fatigue Syndrome by the Comparison of Networks

<u>Frank Emmert-Streib¹</u> Earl F. Glynn¹ Christopher Seidel¹ Christoph L. Bausch¹ Arcady Mushegian^{1,2}

¹Stowers Institute for Medical Research

²University of Kansas School of Medicine

7th June 2006

Outline

- 1
- Introduction
- Properties of CFS
- Results so far
- Hypothesis about CFS
 - Pragmatic definitions
- Approach
 - Quasi-pathway
 - Quasi-pathway
 - Classify patients
 - Classify genes
 - Inferring causality
 - Network Comparison
 - Results
 - Biological processes used in our analysis

Frank Emmert-Streib

Detecting pathological Pathways of the CFS

Properties of CFS

• CFS has no diagnostic clinical signs or laboratory abnormalities

- CFS is defined by symptoms and disability
- It is unclear if CFS represents single disease

・ロン ・回 ・ ・ ヨン ・ ヨン

Properties of CFS

- CFS has no diagnostic clinical signs or laboratory abnormalities
- CFS is defined by symptoms and disability
- It is unclear if CFS represents single disease

・ロン ・回 と ・ ヨン・

Properties of CFS

- CFS has no diagnostic clinical signs or laboratory abnormalities
- CFS is defined by symptoms and disability
- It is unclear if CFS represents single disease

・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・

- Characterize (define) CFS by clinical data + questionnaire
- microarray + clinical data =>

 (classify patients by clinical data, clustering, differentially expressed genes)
 heterogeneous illness & fundamental metabolic perturbations
 WHISTLER et al. 2003

・ 回 ト ・ ヨ ト ・ ヨ ト …

Pragmatic definitions

Hypothesis

Pathways are important rather than 'genes'

 \implies differentially expressed pathways, M. XIONG 2004

Questions

- How to define pathways?
- 2 How to identify pathways?
- How to compare pathways?

・ロン ・回 と ・ ヨン・

Pragmatic definitions

Definition

A pathway (directed graph) is an interconnected group of genes (variables) that regulates a biological process

Definition

A biological process is (hierarchically) defined by GO (gene ontology) terms

イロン イヨン イヨン -

2

Pragmatic definitions

Definition

A pathway (directed graph) is an interconnected group of genes (variables) that regulates a biological process

Definition

A biological process is (hierarchically) defined by GO (gene ontology) terms

イロン イヨン イヨン -

2

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison

Used data

- Clinical Data (questionnaire + blood) => classify patients
- Gene Expression (peripheral blood mononuclear cells)
- GO database \implies classify genes
- \Rightarrow reconstruct quasi-pathways (biological subprocesses)

・ロン ・回 と ・ ヨン・

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison

Why quasi-pathways?

Central Dogma of Molecular Biology

- DNA CHIP-chip
- RNA microarray
- Protein proteomics

Only partial information is used (available) to reconstruct the network

・ロン ・回 と ・ 回 と ・ 回 と

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison

Why quasi-pathways?

Central Dogma of Molecular Biology

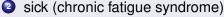
- DNA CHIP-chip
- RNA microarray
- Protein proteomics

Only partial information is used (available) to reconstruct the network

・ロン ・回 と ・ ヨン・

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison

Assumption


Patients participating are 'fair'

Result

Two groups of patients (classification)

aiok (obrania fatique

・ロン ・回 と ・ 回 と ・ 回 と

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison

Assumption

GO database is correct (mega experiment)

Result

N groups of genes for N different biological processes (classification)

・ロン ・回 と ・ 回 と ・ 回 と

臣

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison

GO is a hierarchical database

- molecular function (7460)
- cellular component (1533)
- biological process (9384)

18377 GO terms

・ロン ・回 と ・ ヨン ・ ヨン

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison

Examples of biological (sub)processes:

- regulation of cell cycle, GO:0000074
- DNA repair, GO:0006281
- circadian rhythm, GO:0007623
- endocytosis, GO:0006897
- ATP metabolism, GO:0046034

イロト イポト イヨト イヨト

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison

Examples of biological (sub)processes:

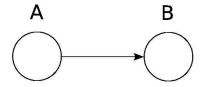
- regulation of cell cycle, GO:000074, 791
- DNA repair, GO:0006281, 538
- circadian rhythm, GO:0007623, 44
- endocytosis, GO:0006897, 225
- ATP metabolism, GO:0046034, 14

イロト イポト イヨト イヨト

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison

Expected disorder in biological processes

- immune cell activation , GO:0045321, 36
- positive regulation of apoptosis, GO:0043065, 42
- positive regulation of transcription, GO:0045941, 101
- circadian rhythm, GO:0007623, 44

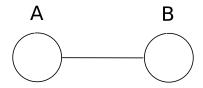

Expected order in biological processes

housekeeping pathways, ???

・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison

- correlation $\rho_{AC} \uparrow \Longrightarrow$ edge between A and B
- temporal ordering \Longrightarrow direction

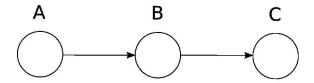


・ロン ・回 と ・ ヨン・

æ

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison

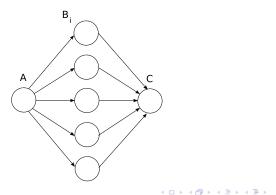
- correlation $\rho_{AC} \uparrow \Longrightarrow$ edge between A and B
- temporal ordering \Longrightarrow direction



・ロン ・回 と ・ ヨン・

æ

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison


- correlation does not imply causality: ρ_{AC} \uparrow
- partial correlation of first order: $\rho_{AC.B} \downarrow$

・ロン ・回 と ・ 回 と ・ 回 と

- correlation does not imply causality: ρ_{AC} \uparrow
- partial correlation of first order: $\rho_{AC.B_i}$ \uparrow
- partial correlation of higher order: $\rho_{AC, \{B_i\}} \downarrow$ (parallel pathways)

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison

- correlation does not imply causality: $\rho_{AC}\uparrow$
- partial correlation of first order: $\rho_{AC.B_i}$ \uparrow
- partial correlation of higher order: $\rho_{AC.\{B_i\}} \downarrow$

Example

N = 50,
$$n = |\{B_i\}| = 8$$

$$\binom{N}{n} \sim 10^8$$

・ロン ・回 と ・ ヨン ・ ヨン

臣

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison

d-separation

$$x \underline{\parallel} y | \{B_i\} \Longleftrightarrow \rho_{xy.\{B_i\}} = 0 \tag{1}$$

VERMA et al. 1988, PEARL 1988, GEIGER et al. 1990, SPIRTES et al. 1998

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison

variance

$$\sigma_x = E[(X - \mu_x)^2] \tag{2}$$

covariance

$$\sigma_{xy} = E[(X - \mu_x)(Y - \mu_y)]$$
(3)

Pearson correlation

$$\rho_{xy} = \frac{\sigma_{xy}}{\sqrt{\sigma_x^2 \sigma_y^2}} \tag{4}$$

イロン イヨン イヨン イヨン

æ

partial Pearson correlation

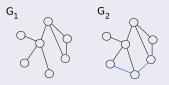
$$\rho_{xy|z} = \frac{\rho_{xy} - \rho_{xz}\rho_{yz}}{\sqrt{(1 - \rho_{xz}^2)(1 - \rho_{yz}^2)}}$$
(5)

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison

Definition (Undirected dependency graph (UDG) of first order)

An UDG G of first order is an undirected, unweighted graph with N nodes (number of genes) that is obtained via the following procedure:

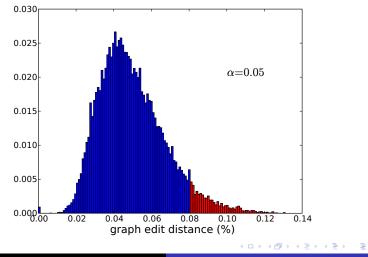
- connect all nodes with an edge with each other
- calculate the correlation between all profiles x_i
- **3** delete all edges connecting node \mathbf{x}_i with \mathbf{x}_j if $r_{\mathbf{x}_i \mathbf{x}_i} < \Theta_c$
- calculate the partial correlation of first order for all triplets of nodes (x_i, x_j, x_k) that have an edge between x_i and x_j
- Solution delete all edges connecting node \mathbf{x}_i with \mathbf{x}_j if $r_{\mathbf{x}_i \mathbf{x}_j | \mathbf{x}_k} < \Theta_{pc}$


similar to PC-algorithm SPIRTES et al. 1991

・ロン ・四 ・ ・ ヨン ・ ヨン

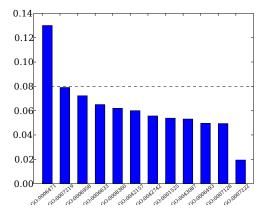
Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison

Graph Edit Distance


- Minimal number of edge deletions/insertions to transform graph G₁ to G₂
- Quasi-pathways:
 - compare only sick vs non-sick pathways ⇒ same number of genes
 - nodes are labeled (genes)

・ロン ・回 と ・ ヨン ・ ヨン

Quasi-pathway Quasi-pathway Classify patients Classify genes Inferring causality Network Comparison


Frank Emmert-Streib Detecting pathological Pathways of the CFS

Biological processes used in our analysis Network comparison

GO term	name
GO:0006471	protein amino acid ADP-ribosylation (31)
GO:0007219	Notch signaling pathway (28)
GO:0008360	regulation of cell shape (22)
GO:0042157	lipoprotein metabolism (20)
GO:0007126	meiosis (36)
GO:0006958	complement activation, classical pathway (30)
GO:0007222	frizzled signaling pathway (19)
GO:0006633	fatty acid biosynthesis (37)
GO:0043087	regulation of GTPase activity (40)
GO:0042742	defense response to bacteria (32)
GO:0001525	angiogenesis (45)
GO:0006493	protein amino acid O-linked glycosylation (25)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣へで

Biological processes used in our analysis Network comparison

GO:0006471 protein amino acid ADP-ribosylation GO:0007219 Notch signaling pathway

Detecting pathological Pathways of the CFS

ъ

Biological processes used in our analysis Network comparison

Summary

- gene network represents biological (sub)process (pathway)
- comparison between normal (non-sick) and perturbed (sick) organism is reduced to the comparison between networks representing the corresponding biological processes
- conceptual generalization of differentially expressed genes to 'differentially' expressed biological processes (quasi-gene networks, M. XIONG et al. 2004)
- predicted pathways involved in CFS: GO:0006471 protein amino acid ADP-ribosylation GO:0007219 Notch signaling pathway

イロト イポト イヨト イヨト

Biological processes used in our analysis Network comparison

Acknowledgments

- Malcolm Cook Bioinformatics Stowers Institute for Medical Research, USA
- Matthias Dehmer Center for Integrative Bioinformatics Max F. Perutz Laboratories, Austria
- Galina V. Glazko
 Department of Biostatistics and Computational Biology
 University of Rochester, USA
- Daniel Thomasset Bioinformatics Stowers Institute for Medical Research, USA