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Abstract

In this paper we aim to identify biological processes
affected by the chronic fatigue syndrome (CFS). So
far, CFS has neither diagnostic clinical signals nor
abnormalities that could be diagnosed by laboratory
examinations. It is also unclear if the CFS represents
one disease or can be subdivided in different cate-
gories. We use information from clinical trials, the
gene ontology (GO) database as well as gene expres-
sion data to identify undirected dependency graphs
(UDGs) representing biological processes according
to the GO database. The structural comparison of
UDGs of sick vs non-sick patients allows us to make
predictions about the modification of pathways due
to pathogenesis.
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1 Introduction

The chronic fatigue syndrome (CFS) is a disease that
affects approximately one million people in the USA

alone [9]. So far, the diagnosis and evaluation of CFS
has been primarily based on the presence or absence
of various symptoms over time [6] rather than, e.g.,
clear clinical signals [12]. Patients suffering from CFS
experience persisting or relapsing fatigue of at least
six month duration that is not substantially reduced
by rest and causes a significant reduction in activities
[8]. Currently, the definition of CFS is largely based
on case studies such as Fukuda et al. [5].

In this article we do not aim to classify patients as
sick (chronic fatigue) or non-sick nor we classify genes
based on experimental data from various methodolo-
gies. Instead, we use this information as prior in-
formation to constrain our analysis, because we ex-
pect that the signature of this disease in experimen-
tal data of any kind will be vanishingly small due to
our fundamental lack of understanding of this disease
preventing an efficient design of experiments. This
statement is confirmed by preceding studies of the
CFS. Whistler et al. [12] found that microarray data
could only be clustered meaningfully if the data of the
patients were classified beforehand based on clinical
data and the grouping of genes according to biolog-
ical pathways. In this article we pick up this result
and use clinical data that classify patients in vari-
ous groups [8]. From these groups we use only the
group of sick (CF) and non-sick people, because we
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think that this distinction can be done reliably. We
are aware of the speculation that the chronic fatigue
disease is a hetero- rather than homogeneous illness
which means that it is likely that the overall class of
chronic fatigue patients can be further subdivided in
smaller classes corresponding to different representa-
tives of the CFS [12]. However, for our study this
coarse classification is sufficient, because we do also
not aim to detect these subclasses. In addition to the
clinical data, we use the gene ontology (GO) database
[2] as prior information to group genes according to
their GO terms associating them with biological pro-
cesses. For the resulting groups of genes, we construct
an undirected dependency graph (UDG) from expres-
sion data of peripheral blood. This gives us, e.g., for
the biological process of humoral immune response
(GO:0006959) one UDG representing the stage ’sick’
(CF) and one representing ’non-sick’. Our central
hypothesis in this article is that the CFS has a sig-
nature detectable on a pathway level rather than on
the expression level of single genes. More precisly, we
suggest an extension of the concept of differentially
expressed genes on a pathway level which means that
the orchestra of expressed genes belonging all to a cer-
tain pathway is modified in response to the presence
of a disease. Mathematically, we detect this modifi-
cation by evaluating the similarity of the undirected
dependency graphs representing pathways. We are
aware of the fact, that the available data from mi-
croarray experiments may not be fully sufficient to
reconstruct the molecular interactions of genes and
their products. For this reason, the UDGs are an
approximation of the true pathways capturing some
but certainly not all structural information of the un-
derlying interactions. Following Xiong et al. [?] we
name these approximations quasi-pathways. The as-
sumption behind this hypothesis is that in the sim-
plest case the phenotype of an organism is affected by
a single gene mutation that means there is a one-to-
one correspondence between phenotype and a single
gene. In general, however, this oversimplified view
is wrong, because otherwise one could only observe
N different phenotypes, whereas N corresponds to
the number of genes of the genome of an organism.
This implies, that combinations of genes and their
controlled expression determine a phenotype. Due to

the fact, that biological processes in general have a
high intrinsic variability, not to confuse with a mea-
surement error [4, 7], in contrast to, e.g., technical
processes, it is further plausible that not only one
expression pattern of genes results in a specific phe-
notype but multiple. This makes biological processes
robust and stable against perturbations [4, 7] despite
the sloppy functioning of its parts. This short ex-
cursion makes clear that the concept of differentially
expressed genes loses its significance in the context
of surjective phenotypes, which represent in our case
the symptoms of CFS.

This article is organized in the following way. In
the next section 2 we introduce our mathematical
approach. Then we present in section 3 our results
and conclude this article in 4 with a summary and
conclusions.

2 Methods

The approach we suggest is based on three different
sources of information. We use clinical data, gene
expression data of peripheral blood mononuclear cells
[1] and the gene ontology database.

2.1 Classification of patients

The clinical data provides us with a classification of
the 227 patients participating in the study into nine
categories [8]. From this study we use only data from
patients from - chronic fatigue syndrome in the worst
stage and non fatigue (NF) in the least stage. Loosely
speaking, this corresponds to two classes - sick vs.
non-sick. In the following we use this abbreviation
to simplify the communication. We assume, that the
distinction between people from either of these two
classes can be done reliably provided the patients
participated ’fair’ in the sense that they answered
the questionnaire correctly on which the classifica-
tion was based.

2.2 Classification of genes

We obtain a meaningful classification of genes in bi-
ological processes by the GO database. GO is hi-
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Table 1: Biological processes used in our analysis.
GO term name

GO:0006471 prot. am. acid ADP-ribosylation
GO:0007219 Notch signaling pathway
GO:0008360 regulation of cell shape
GO:0042157 lipoprotein metabolism
GO:0007126 meiosis
GO:0006958 complement activation,

classical pathway
GO:0007222 frizzled signaling pathway
GO:0006633 fatty acid biosynthesis
GO:0043087 regulation of GTPase activity
GO:0042742 defense response to bacteria
GO:0001525 angiogenesis
GO:0045892 negative regulation of

transcription, DNA-dependent

erarchically organized in three major groups - bio-
logical process, molecular function or cellular compo-
nent. Because we hypothesis that pathways should
change significantly due to the influence of the disease
we group genes according to biological processes they
participate. Practically, this grouping is constrained
by two factors. First, we are only looking for groups
consisting of 20 to 50 genes, because the inference of
meaningful connections between genes becomes more
involved for larger groups [11]. Second, we are search-
ing for gene groups that are present to a large extent
on the microarray chip used. For this reason, we se-
lected 12 biological processes fulfilling our conditions
given in table 1.

2.3 Representing pathways as UDG

For the genes that are grouped according to the GO
terms given in table 1 we calculate now the undi-
rected dependency graph (UDG) with the expression
profiles, xi for i ∈ {1, . . .N}, of the genes from the
microarray data. For example, we use the expression
profiles of the genes from regulation of GTPase activ-
ity (GO:0043087) from the sick and non-sick patients
according to section 2.1 and calculate two UDGs, one
for each patient class.

Definition 2.1 (UDG of first order) An UDG G

of first order is an undirected, unweighted graph with
N nodes (number of genes) that is obtained via the
following procedure:

1. connect all nodes with an edge with each other

2. calculate the correlation between all profiles xi

3. delete all edges connecting node xi with xj if
rxixj

< Θc

4. calculate the partial correlation of first order for
all triplets of nodes (xi,xj ,xk) that have an edge
between xi and xj

5. delete all edges connecting node xi with xj if
r
xixj |xk

< Θpc

The thresholds Θc and Θpc are obtained from ran-
domization tests by generating random profiles x̂i by
randomly assigning expression values to the compo-
nents of x̂i from all available expression data. These
thresholds correspond to P values with P = α. The
significance level α was set to 0.05. For the correla-
tion rxixj

we use Pearson correlation

rxixj
=

Cxixj

σxi
σxj

(1)

with the covariance Cxixj
= E[(xi − µxi

)(xj − µxj
)].

The partial Pearson correlation of first order is ob-
tained by

r
xixj |xk

=
rxixj

− rxixk
rxjxk

√

(1 − r2
xixk

)
√

(1 − r2
xjxk

)
(2)

The reason, why we use partial correlation in addi-
tion is exemplified in Fig. 1. Suppose we measure
the correlation between node A and C then we will
receive for the upper situation a high correlation, be-
cause A influences C along some path depicted as
dashed line. However, if along the path from A to
C there is another node B then A does not influ-
ence B directly. If we would estimate the underlying
graph structure only based on correlation the result-
ing graph would have an additional edge from A to
C not present in the graph in Fig. 1. In contrast,
the partial correlation r

xA,xC |xB
is zero, because B

blocks the information flow. Hence, using partial cor-
relation of first order is a first step to estimate the
underlying causal structure of interactions [10]
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Figure 1: Visualization of direct and indirect cause
from a hypothetical gene A to gene C.

2.4 Similarity of pathways

Finally, we need to define a similarity measure to
evaluate the modifications of UDGs from a sick vs a
non-sick pathway. Due to the fact, that we com-
pare only graphs with the same order (number of
nodes) whose nodes are labeled (names of genes) we
use the well known graph edit distance by Bunke [3].
In this special case this measure counts the number
of edge deletions and insertions one needs to trans-
form, e.g., graph GA into graph GB . Again, to de-
cide if two graph are significantly un-similar we cal-
culate numerically a distribution of similarity values
of random UDGs based on randomized profiles from
the microarray data and obtain a threshold Θs cor-
responding to a P value with P = α. Similarity val-
ues larger than Θs have P values less than α and,
hence, are statistically significant indicating to reject
the null hypothesis.

3 Results

The graph edit distances for the biological processes
in table 1 are shown in Fig. 2. The results are ranked
in descending order. The horizontal dashed line cor-
responds to a P value of α = 0.05. Graph edit dis-
tances above this line are significant with a P value
less than α. One can clearly see, that the first bar
is much higher than all other bars and the threshold
Θs. The biological process of this pathway is protein
amino acid ADP-ribosylation (GO:0006471).
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Figure 2: Similarity values of networks obtained by
the comparison of the same pathway from sick vs non-
sick patients. The similarity between the networks
was calculated with the graph edit distance [3]. The
dashed line corresponds to a P value of 0.05.

4 Conclusions

In this paper we introduced a novel method to detect
differences in biological pathways of a sick vs non-sick
organism. We exemplified our method on expression
data from peripheral blood mononuclear cells from
patients suffering from chronic fatigue syndrome and
control patients who are healthy. The basic idea of
our method consists in the estimation of an ’inter-
action strength’ between genes corresponding biolog-
ically to a causal influence the genes have on each
other. Because the biological processes under inves-
tigation are complex we did not use the absolute value
of the estimated strengths but simplified the situation
by allowing only two values of an edge - zero or one.
This conservative approach allows us to calculate nu-
merically P values for the rejection or acceptance of
an edge. That means, we did not aim to estimate the
real networks representing biological pathways, but
quasi pathways representing some but certainly not
all biological interactions present or absent in a living
cell. By comparing undirected dependency graphs
of the same biological quasi pathway from chronic
fatigue and control patients we found that protein
amino acid ADP-ribosylation (GO:0006471) is signif-
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icantly changed due to the influence of the disease.
We want to emphasize that we did not aim to de-

tect the differentially expression of single genes be-
tween chronic fatigue and healthy people, but to de-
tect modifications due to the pathogenesis of com-
plete pathways the genes participate. This concep-
tual understanding was already introduced in a sim-
ilar form by Xiong et al. [13], however, by using a
different mathematical framework. We believe that
complex diseases, as the chronic fatigue syndrome,
needs to be understood on the systems level which
can be represented as networks rather than on the
level of single genes and we are already curious about
the outcome of further experiments using our predic-
tion, about the involvement of the protein amino acid
ADP-ribosylation pathway in the chronic fatigue syn-
drome, as starting point.
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