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ABSTRACT 
The completion of the genome sequence of Plasmodium 
falciparum revealed that close to 60% of the annotated genome 
corresponds to hypothetical proteins and that many genes, whose 
metabolic pathways or biological products are known 
biochemically, had not been predicted. Recently, using global 
gene expression of the asexual blood stages of P. falciparum at 1h 
resolution scale and Discrete Fourier Transform (DFT) based 
techniques, it has been suggested that malaria parasites follow a 
rigid clock-wise program. Thus, a new list of coding genes with 
putative similar biological functions has significantly augmented 
new targets for vaccine and drug development. In this paper, 
genes are annotated under a different perspective: a list of 
functional properties is attributed to networks of genes 
representing subsystems of the regulatory expression system of P. 
falciparum. The model adopted to represent genetic networks, 
called Probabilistic Genetic Network (PGN), is a Markov chain 
with some additional properties. This model mimics the properties 
of a gene as a non-linear stochastic gate and the systems built by 
coupling of these gates. Moreover, a tool that integrates mining of 
dynamical expression signals by PGN design techniques, different 
databases and biological knowledge, was developed. The 
applicability of this tool for discovering gene networks of the 
malaria expression regulation system have been validated using 
the glycolytic pathway as a “gold-standard”. Presently, we are 
trying to annotate genes not considered by the DFT approach. 
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G.3. [PROBABILITY AND STATISTICS] Markov processes 
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1. INTRODUCTION  
Malaria remains the most devastating parasitic disease worldwide,  
responsible each year for 300-500 million clinical cases and 1-2 
million deaths, mostly in children below 5 years old [12]. 
Furthermore, the appearance of resistant parasite strains to most 
antimalarial drugs, the existence of insecticide-resistant Anopheles 
mosquitoes and the global environmental heating  have 
exacerbated this health situation.  

The advent of genomics into malarial research is significantly 
accelerating the discovery of control strategies. Indeed, the first 
draft of the complete genome sequence of Plasmodium 
falciparum, the most deadly human malaria parasite, was released 
only two years ago  [8], but it has completely modified the way of 
thinking for the development of new vaccines, drugs and 
alternatives of control strategies. Moreover, it has allowed to 
initiate global scale studies on the transcriptome [2], proteome [7] 
and metabolome [14] of the parasite in different developmental 
stages.   

Recent experimental evidence indicates that malaria parasites 
posses unique mechanisms for control of gene expression: data 
from SAGE analysis has demonstrated that approximately 17% of 
abundant tags correspond to anti-sense transcripts of annotated 
genes [11], what suggests that these anti-sense transcripts should 
be involved in post-transcriptional regulation; reverse genetics 
approaches have shown that introns co-regulate expression of 
variant genes [4]; although promoters seem to be bi-partite, it is 
postulated that there must be unique sets of malarial transcription 
factors due to the high AT-content of  intergenic regions [10].  

Progressing the research effort, dynamical global gene expression 
measures of the asexual blood stages of the parasite at 1h-scale 
resolution were recently reported [1]. Moreover,  using Discrete 
Fourier Transform (DFT) based techniques, the researchers 
verified that, during this life stage, the parasite seems to follow a 
rigid clock-wise program in which genes with common functions 
are transcribed at similar times. This study recognized 73% of the 
QC dataset (i.e., 3719 elements) expression signals with almost 
sinusoidal shape in the logarithmic scale or, equivalently, pulse 
like shape in a scale proportional to number of hybridized 
molecules. Ordering these signals by phase, they constructed a 
wave of signal propagation and ordered genes. Analysis of 
ordered genes throughout the asexual blood stages provided a 
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comprehensive and biologically meaningful list of genes with 
putative similar functions [1]. Unfortunately, elements which had 
not almost sinusoidal shape and which represented 27%  of the 
QC dataset (i.e., 1361 elements), were not included in these 
analysis. 

In this paper a list of functional properties is attributed not to 
individual genes but to networks. To do so, it was created a tool 
that integrates mining of dynamical expression signals and 
conventional data basis (i.e., genoma, proteoma, metaboloma, and 
clinical data), with biological knowledge. 

This annotation approach may be applied to all elements of the 
QC set, independent of the shape of their dynamical signals being 
sinusoidal or not. It consists in interpreting subsystems of the 
malaria expression regulation system as a probabilistic genetic 
network (i.e., a stochastic process that is a specialization of a 
Markov chain) [13], designing these networks from the dynamical 
signals observed and annotating the subsystems designed, using 
conventional data basis information and expert knowledge. The 
subsystems to be designed are defined from seed genes of 
particular biological interest, that is, the subsystems are composed 
by genes that predict or are predicted by seed genes [9].  For 
example, some genes analyzed by the DFT approach were used as 
seeds to discover other non sinusoidal genes associated with the 
same phase of the parasite life cycle.  

Following this Introduction, Section 2 presents the concept of 
probabilistic genetic network (PGN). Section 3 describes the 
technique adopted for designing a PGN. Section 4 describes 
software tools developed. Section 5 gives results of application of 
the design techniques to simulated PGNs and presents preliminary 
biological results obtained applying the proposed technique to the 
QC dataset [1]. Finally, in Concluding Remarks, the results and 
future steps of this research are discussed. 

 

2. PROBABILISTIC GENETIC NETWORKS 
The life of an organism depends on many metabolic pathways, 
that are regulated by gene expression networks.  The mechanism 
of pathways regulation involves a complex system with a lot of 
forward and feedback signals. These signals are RNA, produced 
by gene expression, and protein complexes, produced by 
interaction of proteins build by translation of mRNA. Protein 
complexes are feedback signals that control gene transcription and  
forward signals that, in the form of enzymes, control metabolic 
pathways. In such network, the expression of each gene depends 
on both its own expression and the expression values of other 
genes at previous instants of time. Due to this behavior, this 
complex network of interactions can be modeled by a dynamical 
system.                                                         

Finite dynamical systems, discrete in time and finite in range, can 
model the behavior of gene expression networks. In that model, 
we represent each gene by a variable which takes the expression 
value of that gene. All these variables, taken collectively, are the 
components of a vector called the state of the system. Each 
component (i.e., gene) of the state vector has associated a function 
that calculates its next value (i.e., expression value) from the state 
at previous instants of time. These functions are the components 
of a function vector, called transition function, that defines the 
transition from one state to the next and represents the gene 
regulation mechanisms. In order to formalize these ideas, we will 

introduce some definitions and notations. Let  R  be the range of 
all state components. For example, }1,0{=R , in binary 
systems, and }1,0,1{−=R , in three levels systems. The 
transition function φ , for a gene network of n  genes, is a 

function from nR to nR . This means that the transition function 
maps the present state to the next state. A finite dynamical system 
is given by, for every 0≥t , 

])[(]1[ txtx φ=+  

where nRtx ∈][ , for every 0≥t  . A component of x  is a 
value Rx i ∈ . 

Systems defined as above are time translation invariant, that is, 
the transition function is the same for all discrete time t .  When 
φ is a stochastic function (i.e., for each state ][ tx , the next state 

])[( txφ  is a realization of a random vector), the dynamical 
system is a stochastic process.  

In this paper, we represent gene expression networks by stochastic 
processes, where the stochastic transition function is a particular 
family of Markov chains, that is called probabilistic genetic 
network (PGN) . 

Consider a sequence of random vectors ,...,, 210 XXX  

assuming values in nR  and denoted, respectively, 
],...2[],1[],0[ xxx . A sequence of random states ∞

= 0)( ttX   is 

called a Markov chain, if for every 1≥t ,  

])1[/][(])1[...,],0[/][( 110 −===−=== −− txXtxXPtxXxXtxXP tttt
 

The significance of a Markov chain lies in the fact that the 
conditional probability of the future event, given the past history, 
depends only upon the immediate past and not upon the remote 
past. 

A Markov chain is characterized  by a transition matrix 
XY /π   of 

conditional probabilities between states, whose elements are 
denoted 

xyp /
,  and an initial condition random vector of states 

0π . The stochastic transition function φ at the time t is given by, 

for every t ≥ 1, 

,])[( ytx =φ  

where y is a realization of a random vector with distribution 

][/ txp •
. 

A Probabilistic Genetic Network (PGN) is a Markov chain 
),( 0/ ππ XY

  such that 

i - 
XY /π  is homogeneous, that is, 

xyp /
 is independent of t . 

ii - 0/ >xyp , for every states  nRyx ∈, .  

iii - 
XY /π  is conditionally independent, that is, for every states  

nRyx ∈, ,  

∏
=

=
n

i
ixy xypp

1
| )|(  

iv - 
XY /π  is almost deterministic,  that is, for every state 

nRx ∈ , there exists an state, nRy ∈ such that 1/ ≈xyp . 



v – For every gene j there exits a vector ja of integer numbers 
such that for every nRzx ∈, and Ry j ∈ , 
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These axioms imply that each gene is characterized by a vector of 
coefficients a  and a vector stochastic function 

jg  from Z , a 

set of integer numbers, to R . If j
ia  is positive then the target 

gene j  is excited by gene i , if j
ia  is negative then it is inhibited 

by gene i , if j
ia  is 0 , then it is not affected by gene i .  We say 

that gene j  is predicted by the gene i  when j
ia  is different of 

0 . The component j  of the stochastic transition function φ , 

denoted
jφ , is built by the composition of 

jg with the linear 

combination of ja  and the previous state ][tx , that is, for every 

1≥t , 

.])[(])[(
1
�

=

=
n

i
i

j
ijj txagtxφ  

where �
=

n

i
i

j
ij txag

1

])[(  is a realization of a random variable in R , 

with distribution �
=

⋅
n

i
i

j
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This model mimic the properties of  a gene as a non linear 
stochastic gate and the systems built by compiling of these gates. 
In particular, the expression of a gene depends on a linear 
combination of excitatory and inhibitory input signals.  

 

3. DESIGN OF PGNs 
The goal of this research is to estimate a PGN [6] representing a 
subsystem of the malaria parasite gene expression network from 
dynamical microarray expression measures and biological 
knowledge. In  the following, it is described the procedure 
adopted for PGN estimation. 

The entropy )(XH  of  a random variable X  is a measure of its 
distribution }{ ip , given by . 

�
=

=
n

i
ii ppXH

1

log)(  

The entropy has some remarkable properties: i-all the 
distributions formed by permutations of pi have the same entropy; 
ii-concentrating the probability mass of a distribution implies in 
diminishing its entropy. As a corollary of Property ii, the 
distribution with maximum entropy is the uniform distribution 
and the ones with minimum entropy are the ones with the whole 
probability mass concentrated in one point. 

The mutual information [5] between to random variables X  and 
Y  is the measure defined by 

)./()(),( XYHYHYXI −=  

The mutual information  is always positive or zero. It measures 
the probability mass concentration of P(Y) in )/( XYP  by the 

observation of X .  The expectation )],([ YXIE  of ),( YXI   is 
given by 

)]./([)()],([ XYHEYHYXIE −=  

When 0)],([ =YXIE , X  and Y  may be independent variables 
and the condition )/()( XYPYP =  should be tested. In case this 
condition is true, then X  and Y are independent, otherwise, they 
have dependence. 

The expectation of the mutual information is used to estimate the 
PGN. The  random variable Y  will be the gene value ]1[ +tyi   to 

be predicted and the given random variable X  will be the vector 
of genes ][tx  pondered by an integer vector a , characteristic of 
gene iy .  For each vector a , with }1,0,1{ +−∈ia  and at most 

three values different of 0 , the the mean mutual information is 
estimated. The first vectors a , that have greater mutual 
information are selected.  These vectors indicate the connection 
between genes and the kind of connection, excitatory or 
inhibitory. At this moment, new vectors can be proposed by 
modifying selected vectors or just by adding new ones. The 
vectors modified or proposed will expand the list of selected 
vectors. 

Using a selected vector for each gene, the architecture of a 
complete system is built. The transition matrix XY /π   is 

computed and the system is iterated till stability of  tπ  [3]. Then, 

we compute the entropy of tπ   and choose the better ones 
according with smaller entropy. The motivation for this step is to 
choose simpler, more stable and robust systems.  When the 
probability mass of  tπ   is concentrated, the system has a small 
set of states that are visited very often, what means that these 
states should be limited circles stable to perturbations. At this 
step, new systems may be proposed by choosing other systems not 
chosen by the low entropy criteria. 

Finally, the chosen systems are ordered according to their 
likelihood, with respect to the observed data. The likelihood is 
computed for sequences of several sizes. A score is computed by 
the addition of the likelihood weighted by the size of the sequence 
considered in its computation. The better systems are the ones that 
have greater scores. 

 

4. DEVELOPED SOFTWARE TOOLS  
The designed software system estimates gene networks from 
dynamical expression measures and represent them as graphs  
linked to malaria data bases. A user-friendly graphical interface 
was implemented to facilitate the biological interpretation of the 
results. It uses  GraphViz (http://www.research.att.com/sw/ 
tools/graphviz/), a package to visualize graphs. This software 
receives files representing individual genes and their predictors as 
input, and generates a planar representation of the gene network. 
Moreover, for each node (i.e., gene) of the network, a color-code 
was assigned according to the functional biological categories 
defined in [1]: transcriptional machinery (pink), Cytoplasmic 
translation machinery (blue), glycolitic patways (yellow), etc.  
Each node has a link to a page with pointers to three public 
databases: PlasmoDB (http://plasmodb.org), Metabolic Pathways 
(http://biocyc.org/PFA/) and DeRisi’s transcriptome database 



(http://malaria.uscf.edu/). Thus, this software allows easy access 
to different information of each target gene and will help in 
annotation of hypothetical proteins and null elements represented 
in the array. Another possibility is the generation of a set of 
individual subgraphs per gene, where each node points to a 
subgraph of its neighborhood. This facility permits navigability on 
the graph.  

 

5. EXPERIMENTAL RESULTS 
5.1. Simulations 
For validating the proposed PGN estimation technique, artificial 
networks that satisfy the PGN definition were created, simulated 
and estimated.These networks simulated have 12 genes that may 
be predicted from one to five genes or may even be independent. 

All network genes are ternary and )/( xyp i  has at least  80% of 

concentration mass. The simulations  were just 48 iterations long 
(i.e., the number of iterations present at an 1h-scale resolution 
observation of the asexual blood stages of P. falciparum). For 
each target gene, the five better pairs of predictors were computed 
according to the mutual information criteria. The quality of a 
predictor g was defined as the addition of the mutual information 
of all pairs of predictors in which g appears. Finally, the 
predictors were ordered by their quality. In the performed 
experiments, the genes with greater quality were almost always 
exactly the predictors for the target gene. Some of these 
experiments can be find at  http://www.vision.ime.usp.br/camda04 

 

5.2 Signal normalization and quantization 
For validating the proposed methodology, the well known 
glycolytic pathway was studied. Before applying the predictor 
estimation techniques the signal was normalized and quantized. 

Before quantization, the signals  are  normalized by the normal 
transformation  η  given by, for every random variable )(tg , 

)]([
)]([)(

)]([
tg

tgEtg
tg

σ
η −= , 

where )]([ tgE  and )]([ tgσ are, respectively, the expectation and 
standard deviation of )(tg . 

The normal transformation has two important properties: i- 
0)]]([[ =tgE η  and 1)]]([[ =tgησ , for every random variable 

)(tg ; ii- )]([)]([ tgtg ληη = , for every real number λ . 

The quantization of a gene at a given instant is a mapping from 
the continuous expression log-ratio into three qualitative 
expression levels {-1,0,+1}, respectively, down, null and up 
regulated in relation to the reference. The quantization of a gene 
signal g  is performed by a threshold mapping given by, for every 

0≥t ,  

�
�
�

�

�

≤−
≤≤

≥+
=

lsif

hslif

hsif

tg

1
0

1
)(  

Normalization and quantization have the effect of creating 
equivalence classes between signals diminishing estimation errors 
due to lack of data. 

 

5.3 Glycolysis regulatory system prediction 
The predictory capacity of the proposed model has been tested by 
choosing target genes that code for enzymes pertaining to the 
glycolytic pathway (hexokinase, phosphohexose isomerase 
PF14_0341, phosphofructokinase1 PF10755c, aldolase 
PF14_0425, triose phosphate isomerase PF14_0378, 
glyceraldehide 3 phosphate dehydrogenase PF14_0598, 
phosphoglycerate kinase PFI1105w, phosphoglycerated mutase 
PF11_0208, enolase PF10_0155). These genes have almost 
sinusoidal signal and were grouped in the ring state of the parasite 
life cycle according to the phaseogram [1].  

In this prediction experiment all 5080 elements of the QC dataset 
were considered as possible predictors of the 8 glycolysis gene 
targets. For each target, it was computed the mutual information 
for the combination of all pairs of genes of the genome and the 
best five were chosen., that is, between 12,900,660 of gene pairs, 
the best five were chosen. Figure 1B shows three genes (id_oligo 
n132_136, j647_6 and c305 ) from the five best predictors of gene 
PFI0755c (id_oligo i13056_1). Note that in the best pair appears 
gene PF14_0341 (id_oligo n132_136), what agrees with the 
glycolysis metabolic pathway presented in Figure 1A. Besides 
note that the other gene of this pair, PF10_0097 (id_oligo 
j647_6), has a signal that is not sinusoidal as shown in Figure 1C. 

 

 
Figure 1. Predictory capacity of the PGN in Glycolisis. A. 
Initial steps of Glycolysis until the formation of Aldolase. B. 
Partial graphical interphase results displaying the best pair of 
combinations (red arrows) that predict phosphofructokinase. 
C. Dynamical expression of the gene PF10_0097 (id_oligo 
j647_6), non-sinusoidal and that was not included by the DFT 
approach [1]. 
 
The other targets were not predicted with the same precision but if 
the number of considered predictors increase they soon appear. 
The best 400 single predictors (i.e., just one gene predicting 
another gene) for each gene was calculated and this fact was 
verified for all 8 considered genes.  



Note that the number of considered genes necessary to find the 
right predictor of a target gene is related to their positions in the 
phaseogram. 

6. CONCLUDING REMARKS 
To advance our knowledge on the biology of P. falciparum, we 
have designed PGNs from dynamical expression signals of the 
asexual blood stages reported by Bozdech et al [1]. Unlike their 
DFT approach, PGN design allowed us to use all the elements 
available in the QC dataset. Significantly, this technique was 
tested to target genes that code for enzymes of the glycolytic 
pathway and some of them (i.e. phosphofructokinase) were 
predicted with remarkable precision: the best pair of predictors, 
obtained through millions of different combinations, was formed 
by the expected gene (i.e., phosphoglucose isomerase) and a 
hypothetical protein, with non sinusoidal dynamical signals 
(Figure 1).  

These preliminary results were obtained without considering the 
equivalence between linear combinations of inputs, what should 
improve the results, since the estimation errors will diminish and 
the hypothesis is quite consistent with observed gene dynamics. 
Besides this model will permit to distinguish between inhibitory 
and excitatory signals. 

Although the normal transform creates equivalence classes that 
diminishes the estimation errors, it amplifies noise in 
housekeeping genes that have almost constant expression signals. 
One way of circumventing this problem is to detect and exclude 
the housekeeping genes of the regulatory systems study before 
signal quantization.  

The next steps of this research include mainly improving the 
network design technique and deeper exploration of the malaria 
control system architecture. In particular, annotation of genes not 
considered by the DFT approach.  
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